Katherine A Fitzgerald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8701141/publications.pdf Version: 2024-02-01

		813	625
295	71,344	118	258
papers	citations	h-index	g-index
329	329	329	64454
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464, 1357-1361.	27.8	3,130
2	Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 2008, 9, 847-856.	14.5	2,568
3	Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology, 2011, 12, 222-230.	14.5	2,447
4	IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology, 2003, 4, 491-496.	14.5	2,361
5	Cutting Edge: NF-lºB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. Journal of Immunology, 2009, 183, 787-791.	0.8	2,281
6	AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458, 514-518.	27.8	2,098
7	The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunology, 2008, 9, 857-865.	14.5	2,047
8	Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity, 2012, 36, 401-414.	14.3	1,618
9	IFI16 is an innate immune sensor for intracellular DNA. Nature Immunology, 2010, 11, 997-1004.	14.5	1,369
10	STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity, 2014, 41, 830-842.	14.3	1,325
11	TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunology, 2004, 5, 190-198.	14.5	1,225
12	Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunology, 2007, 8, 487-496.	14.5	1,210
13	Activation of autophagy by inflammatory signals limits $IL-1\hat{l}^2$ production by targeting ubiquitinated inflammasomes for destruction. Nature Immunology, 2012, 13, 255-263.	14.5	1,164
14	Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature, 2001, 413, 78-83.	27.8	1,122
15	The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunology, 2010, 11, 395-402.	14.5	1,113
16	Toll-like Receptors and the Control of Immunity. Cell, 2020, 180, 1044-1066.	28.9	1,099
17	LPS-TLR4 Signaling to IRF-3/7 and NF-κB Involves the Toll Adapters TRAM and TRIF. Journal of Experimental Medicine, 2003, 198, 1043-1055.	8.5	1,053
18	Unified Polymerization Mechanism for the Assembly of ASC-Dependent Inflammasomes. Cell, 2014, 156, 1193-1206.	28.9	1,035

#	Article	IF	CITATIONS
19	A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes. Science, 2013, 341, 789-792.	12.6	925
20	Regulation of inflammasome signaling. Nature Immunology, 2012, 13, 333-342.	14.5	802
21	DNA sensing by the cGAS–STING pathway in health and disease. Nature Reviews Genetics, 2019, 20, 657-674.	16.3	801
22	RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nature Immunology, 2009, 10, 1065-1072.	14.5	762
23	Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell, 2016, 165, 792-800.	28.9	761
24	CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunology, 2013, 14, 812-820.	14.5	746
25	Autophagy Controls IL-1Î ² Secretion by Targeting Pro-IL-1Î ² for Degradation. Journal of Biological Chemistry, 2011, 286, 9587-9597.	3.4	723
26	Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut, 2010, 59, 1192-1199.	12.1	687
27	Recognition of 5′ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus. Immunity, 2009, 31, 25-34.	14.3	660
28	Pattern Recognition Receptors and the Innate Immune Response to Viral Infection. Viruses, 2011, 3, 920-940.	3.3	645
29	TRIF Licenses Caspase-11-Dependent NLRP3 Inflammasome Activation by Gram-Negative Bacteria. Cell, 2012, 150, 606-619.	28.9	645
30	Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. Science, 2018, 362, 1064-1069.	12.6	639
31	Toll-like receptor–induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nature Immunology, 2008, 9, 1399-1406.	14.5	558
32	IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 233-238.	7.1	518
33	The RNA Helicase Lgp2 Inhibits TLR-Independent Sensing of Viral Replication by Retinoic Acid-Inducible Gene-I. Journal of Immunology, 2005, 175, 5260-5268.	0.8	517
34	Interleukin-17–producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Medicine, 2014, 20, 54-61.	30.7	515
35	An Essential Role for the NLRP3 Inflammasome in Host Defense against the Human Fungal Pathogen Candida albicans. Cell Host and Microbe, 2009, 5, 487-497.	11.0	512
36	Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome–dependent processing of IL-1β. Nature Immunology, 2013, 14, 52-60.	14.5	500

#	Article	IF	CITATIONS
37	The Toll–IL-1 receptor adaptor family grows to five members. Trends in Immunology, 2003, 24, 286-289.	6.8	457
38	Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor. Immunity, 2012, 36, 561-571.	14.3	456
39	The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity, 2016, 44, 597-608.	14.3	429
40	Saturated Fatty Acid Activates but Polyunsaturated Fatty Acid Inhibits Toll-like Receptor 2 Dimerized with Toll-like Receptor 6 or 1. Journal of Biological Chemistry, 2004, 279, 16971-16979.	3.4	428
41	Mechanisms of inflammasome activation: recent advances and novel insights. Trends in Cell Biology, 2015, 25, 308-315.	7.9	408
42	MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. Journal of Clinical Investigation, 2006, 116, 2262-2271.	8.2	402
43	The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovascular Research, 2013, 99, 164-174.	3.8	400
44	A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell, 2016, 165, 1672-1685.	28.9	399
45	Lipopolysaccharide Rapidly Traffics to and from the Golgi Apparatus with the Toll-like Receptor 4-MD-2-CD14 Complex in a Process That Is Distinct from the Initiation of Signal Transduction. Journal of Biological Chemistry, 2002, 277, 47834-47843.	3.4	398
46	Immunobiology of Long Noncoding RNAs. Annual Review of Immunology, 2017, 35, 177-198.	21.8	395
47	Citrobacter rodentium: infection, inflammation and the microbiota. Nature Reviews Microbiology, 2014, 12, 612-623.	28.6	392
48	IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nature Medicine, 2017, 23, 1481-1487.	30.7	358
49	Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes and Infection, 2004, 6, 1361-1367.	1.9	355
50	STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16544-16549.	7.1	345
51	Succination inactivates gasdermin D and blocks pyroptosis. Science, 2020, 369, 1633-1637.	12.6	341
52	The Interferon Regulatory Factor, IRF5, Is a Central Mediator of Toll-like Receptor 7 Signaling. Journal of Biological Chemistry, 2005, 280, 17005-17012.	3.4	340
53	Vaccinia virus protein A46R targets multiple Toll-like–interleukin-1 receptor adaptors and contributes to virulence. Journal of Experimental Medicine, 2005, 201, 1007-1018.	8.5	335
54	Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid. Journal of Immunology, 2013, 190, 5216-5225.	0.8	334

#	Article	IF	CITATIONS
55	Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage. Immunity, 2015, 43, 451-462.	14.3	328
56	Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of TLR4. PLoS Pathogens, 2010, 6, e1001191.	4.7	314
57	Molecular mechanisms involved in inflammasome activation. Trends in Cell Biology, 2009, 19, 455-464.	7.9	310
58	Post-transcriptional regulation of gene expression in innate immunity. Nature Reviews Immunology, 2014, 14, 361-376.	22.7	301
59	Recognition of herpesviruses by the innate immune system. Nature Reviews Immunology, 2011, 11, 143-154.	22.7	293
60	The NLRP12 Inflammasome Recognizes Yersinia pestis. Immunity, 2012, 37, 96-107.	14.3	293
61	IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4571-80.	7.1	285
62	Rip1 Mediates the Trif-dependent Toll-like Receptor 3- and 4-induced NF-l̂®B Activation but Does Not Contribute to Interferon Regulatory Factor 3 Activation. Journal of Biological Chemistry, 2005, 280, 36560-36566.	3.4	273
63	The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science, 2016, 354, 765-768.	12.6	271
64	The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiological Genomics, 2004, 19, 319-330.	2.3	270
65	The E3 Ubiquitin Ligase Ro52 Negatively Regulates IFN-β Production Post-Pathogen Recognition by Polyubiquitin-Mediated Degradation of IRF3. Journal of Immunology, 2008, 181, 1780-1786.	0.8	268
66	A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. Journal of Experimental Medicine, 2009, 206, 1899-1911.	8.5	267
67	Innate sensing of malaria parasites. Nature Reviews Immunology, 2014, 14, 744-757.	22.7	260
68	Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nature Medicine, 2014, 20, 47-53.	30.7	256
69	Cutting Edge: FAS (CD95) Mediates Noncanonical IL-1β and IL-18 Maturation via Caspase-8 in an RIP3-Independent Manner. Journal of Immunology, 2012, 189, 5508-5512.	0.8	254
70	Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7391-7396.	7.1	250
71	NLRC3, a Member of the NLR Family of Proteins, Is a Negative Regulator of Innate Immune Signaling Induced by the DNA Sensor STING. Immunity, 2014, 40, 329-341.	14.3	245
72	Sensing of HSV-1 by the cGAS–STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications, 2016, 7, 13348.	12.8	245

#	Article	IF	CITATIONS
73	Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling. Nature Cell Biology, 2009, 11, 1473-1480.	10.3	241
74	NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis. PLoS Pathogens, 2009, 5, e1000500.	4.7	239
75	The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6299-6304.	7.1	238
76	Specific Inhibition of MyD88-Independent Signaling Pathways of TLR3 and TLR4 by Resveratrol: Molecular Targets Are TBK1 and RIP1 in TRIF Complex. Journal of Immunology, 2005, 175, 3339-3346.	0.8	235
77	Innate Immune Recognition of an AT-Rich Stem-Loop DNA Motif in the Plasmodium falciparum Genome. Immunity, 2011, 35, 194-207.	14.3	234
78	Long non-coding RNAs and control of gene expression in the immune system. Trends in Molecular Medicine, 2014, 20, 623-631.	6.7	229
79	Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine is Primarily Controlled by Toll-like Receptor Signalling. PLoS Pathogens, 2008, 4, e1000138.	4.7	221
80	<i>Listeria monocytogenes</i> is sensed by the NLRP3 and AIM2 inflammasome. European Journal of Immunology, 2010, 40, 1545-1551.	2.9	221
81	HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science, 2020, 369, .	12.6	218
82	Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nature Immunology, 2012, 13, 737-743.	14.5	207
83	Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6593-6598.	7.1	206
84	<i>Salmonella</i> Infection Induces Recruitment of Caspase-8 to the Inflammasome To Modulate IL-1Î ² Production. Journal of Immunology, 2013, 191, 5239-5246.	0.8	206
85	Poxvirus Protein N1L Targets the I-κB Kinase Complex, Inhibits Signaling to NF-κB by the Tumor Necrosis Factor Superfamily of Receptors, and Inhibits NF-κB and IRF3 Signaling by Toll-like Receptors. Journal of Biological Chemistry, 2004, 279, 36570-36578.	3.4	205
86	DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nature Immunology, 2012, 13, 612-620.	14.5	205
87	Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nature Communications, 2015, 6, 7515.	12.8	205
88	cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine, 2018, 24, 50-61.	30.7	205
89	TLRs: Differential Adapter Utilization by Toll-Like Receptors Mediates TLR-Specific Patterns of Gene Expression. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 466-477.	3.4	204
90	Serum Amyloid A Activates the NLRP3 Inflammasome and Promotes Th17 Allergic Asthma in Mice. Journal of Immunology, 2011, 187, 64-73.	0.8	203

#	Article	IF	CITATIONS
91	Cutting Edge: TLR Signaling Licenses IRAK1 for Rapid Activation of the NLRP3 Inflammasome. Journal of Immunology, 2013, 191, 3995-3999.	0.8	199
92	Long noncoding RNAs in innate and adaptive immunity. Current Opinion in Immunology, 2014, 26, 140-146.	5.5	193
93	Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nature Communications, 2018, 9, 3506.	12.8	192
94	Gasdermin D Restrains Type I Interferon Response to Cytosolic DNA by Disrupting Ionic Homeostasis. Immunity, 2018, 49, 413-426.e5.	14.3	187
95	Gasdermins and their role in immunity and inflammation. Journal of Experimental Medicine, 2019, 216, 2453-2465.	8.5	187
96	The PYHIN protein family as mediators of host defenses. Immunological Reviews, 2011, 243, 109-118.	6.0	179
97	Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nature Immunology, 2013, 14, 543-553.	14.5	177
98	Proteasomal Degradation of Herpes Simplex Virus Capsids in Macrophages Releases DNA to the Cytosol for Recognition by DNA Sensors. Journal of Immunology, 2013, 190, 2311-2319.	0.8	171
99	5,6-Dimethylxanthenone-4-acetic Acid (DMXAA) Activates Stimulator of Interferon Gene (STING)-dependent Innate Immune Pathways and Is Regulated by Mitochondrial Membrane Potential. Journal of Biological Chemistry, 2012, 287, 39776-39788.	3.4	169
100	Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nature Communications, 2016, 7, 10680.	12.8	169
101	Control of the innate immune response by the mevalonate pathway. Nature Immunology, 2016, 17, 922-929.	14.5	159
102	Free Cholesterol Accumulation in Macrophage Membranes Activates Toll-Like Receptors and p38 Mitogen-Activated Protein Kinase and Induces Cathepsin K. Circulation Research, 2009, 104, 455-465.	4.5	157
103	A Novel Role for the NLRC4 Inflammasome in Mucosal Defenses against the Fungal Pathogen Candida albicans. PLoS Pathogens, 2011, 7, e1002379.	4.7	156
104	TLR9 Provokes Inflammation in Response to Fetal DNA: Mechanism for Fetal Loss in Preterm Birth and Preeclampsia. Journal of Immunology, 2012, 188, 5706-5712.	0.8	155
105	Dual Engagement of the NLRP3 and AIM2 Inflammasomes by Plasmodium-Derived Hemozoin and DNA during Malaria. Cell Reports, 2014, 6, 196-210.	6.4	152
106	Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7768-E7775.	7.1	150
107	The Interferon Inducible Gene: Viperin. Journal of Interferon and Cytokine Research, 2011, 31, 131-135.	1.2	146
108	Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by <i>Yersinia pestis</i> YopJ inhibits innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12710-12715.	7.1	144

#	Article	IF	CITATIONS
109	Inflammation and Fibrosis during <i>Chlamydia pneumoniae</i> Infection Is Regulated by IL-1 and the NLRP3/ASC Inflammasome. Journal of Immunology, 2010, 184, 5743-5754.	0.8	143
110	Suppression of systemic autoimmunity by the innate immune adaptor STING. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E710-7.	7.1	139
111	Antiviral Autophagy Restricts Rift Valley Fever Virus Infection and Is Conserved from Flies to Mammals. Immunity, 2014, 40, 51-65.	14.3	138
112	The chemotherapeutic agent DMXAA potently and specifically activates the TBK1–IRF-3 signaling axis. Journal of Experimental Medicine, 2007, 204, 1559-1569.	8.5	137
113	Ras, Protein Kinase Cζ, and lκB Kinases 1 and 2 Are Downstream Effectors of CD44 During the Activation of NF-κB by Hyaluronic Acid Fragments in T-24 Carcinoma Cells. Journal of Immunology, 2000, 164, 2053-2063.	0.8	135
114	The cGAS-STING Pathway for DNA Sensing. Molecular Cell, 2013, 51, 135-139.	9.7	135
115	Importance of Nucleic Acid Recognition in Inflammation and Autoimmunity. Annual Review of Medicine, 2016, 67, 323-336.	12.2	135
116	Malaria-Induced NLRP12/NLRP3-Dependent Caspase-1 Activation Mediates Inflammation and Hypersensitivity to Bacterial Superinfection. PLoS Pathogens, 2014, 10, e1003885.	4.7	134
117	Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death and Differentiation, 2019, 26, 332-347.	11.2	129
118	Streptococcus pneumoniae DNA Initiates Type I Interferon Signaling in the Respiratory Tract. MBio, 2011, 2, e00016-11.	4.1	128
119	Endoplasmic Reticulum Stress-induced Hepatocellular Death Pathways Mediate Liver Injury and Fibrosis via Stimulator of Interferon Genes. Journal of Biological Chemistry, 2016, 291, 26794-26805.	3.4	128
120	Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. European Journal of Immunology, 2016, 46, 504-512.	2.9	125
121	Trif-related adapter molecule is phosphorylated by PKCÎμ during Toll-like receptor 4 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9196-9201.	7.1	124
122	Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. Journal of Leukocyte Biology, 2015, 98, 249-256.	3.3	119
123	NF-κB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3372-3377.	7.1	118
124	TLR-Independent Type I Interferon Induction in Response to an Extracellular Bacterial PathogenÂvia Intracellular Recognition of Its DNA. Cell Host and Microbe, 2008, 4, 543-554.	11.0	118
125	Herpes Simplex Virus Immediate-Early ICPO Protein Inhibits Toll-Like Receptor 2-Dependent Inflammatory Responses and NF-κB Signaling. Journal of Virology, 2010, 84, 10802-10811.	3.4	118
126	Induction and Inhibition of Type I Interferon Responses by Distinct Components of Lymphocytic Choriomeningitis Virus. Journal of Virology, 2010, 84, 9452-9462.	3.4	117

#	Article	IF	CITATIONS
127	Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-β-dependent pathways and increases expression of negative regulators of TLR signaling. Journal of Leukocyte Biology, 2009, 86, 863-875.	3.3	115
128	Caspase-8 Modulates Dectin-1 and Complement Receptor 3–Driven IL-1β Production in Response to β-Glucans and the Fungal Pathogen, <i>Candida albicans</i> . Journal of Immunology, 2014, 193, 2519-2530.	0.8	114
129	Apoptosis, Pyroptosis, and Necroptosis—Oh My! The Many Ways a Cell Can Die. Journal of Molecular Biology, 2022, 434, 167378.	4.2	113
130	The role of type I interferons in TLR responses. Immunology and Cell Biology, 2007, 85, 446-457.	2.3	112
131	Toll-like Receptor-dependent and -independent Viperin Gene Expression and Counter-regulation by PRDI-binding Factor-1/BLIMP1. Journal of Biological Chemistry, 2006, 281, 26188-26195.	3.4	111
132	Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways. PLoS Pathogens, 2013, 9, e1003779.	4.7	111
133	Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. Journal of Hepatology, 2015, 63, 1147-1155.	3.7	111
134	Functional Characterization of Murine Interferon Regulatory Factor 5 (IRF-5) and Its Role in the Innate Antiviral Response. Journal of Biological Chemistry, 2008, 283, 14295-14308.	3.4	110
135	Group B Streptococcus Degrades Cyclic-di-AMP to Modulate STING-Dependent Type I Interferon Production. Cell Host and Microbe, 2016, 20, 49-59.	11.0	110
136	Insights into interferon regulatory factor activation from the crystal structure of dimeric IRF5. Nature Structural and Molecular Biology, 2008, 15, 1213-1220.	8.2	109
137	Innate Immune Responses to Endosymbiotic <i>Wolbachia</i> Bacteria in <i>Brugia malayi</i> and <i>Onchocerca volvulus</i> Are Dependent on TLR2, TLR6, MyD88, and Mal, but Not TLR4, TRIF, or TRAM. Journal of Immunology, 2007, 178, 1068-1076.	0.8	106
138	Interferon Î ³ -inducible Protein (IFI) 16 Transcriptionally Regulates Type I Interferons and Other Interferon-stimulated Genes and Controls the Interferon Response to both DNA and RNA Viruses. Journal of Biological Chemistry, 2014, 289, 23568-23581.	3.4	106
139	Functional Regulation of MyD88-Activated Interferon Regulatory Factor 5 by K63-Linked Polyubiquitination. Molecular and Cellular Biology, 2008, 28, 7296-7308.	2.3	104
140	Dengue Virus Nonstructural Protein NS5 Induces Interleukin-8 Transcription and Secretion. Journal of Virology, 2005, 79, 11053-11061.	3.4	103
141	Resistance to HSV-1 infection in the epithelium resides with the novel innate sensor, IFI-16. Mucosal Immunology, 2012, 5, 173-183.	6.0	103
142	Cutting Edge: <i>Mycobacterium tuberculosis</i> but Not Nonvirulent Mycobacteria Inhibits IFN-β and AIM2 Inflammasome–Dependent IL-1β Production via Its ESX-1 Secretion System. Journal of Immunology, 2013, 191, 3514-3518.	0.8	102
143	Molecular Basis of DNA Recognition in the Immune System. Journal of Immunology, 2013, 190, 1911-1918.	0.8	102
144	Cutting Edge: <i>Plasmodium falciparum</i> Induces Trained Innate Immunity. Journal of Immunology, 2018, 200, 1243-1248.	0.8	101

#	Article	IF	CITATIONS
145	A Fluorescent Reporter Mouse for Inflammasome Assembly Demonstrates an Important Role for Cell-Bound and Free ASC Specks during InÂVivo Infection. Cell Reports, 2016, 16, 571-582.	6.4	99
146	Cutting Edge: A Natural Antisense Transcript, AS-IL1α, Controls Inducible Transcription of the Proinflammatory Cytokine IL-1α. Journal of Immunology, 2015, 195, 1359-1363.	0.8	97
147	Cell Survival and Cytokine Release after Inflammasome Activation Is Regulated by the Toll-IL-1R Protein SARM. Immunity, 2019, 50, 1412-1424.e6.	14.3	97
148	IKK $\hat{I}\pm$ negatively regulates ASC-dependent inflammasome activation. Nature Communications, 2014, 5, 4977.	12.8	96
149	A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. Science Immunology, 2021, 6, .	11.9	96
150	Inhibition of phosphoinositide 3-kinase enhances TRIF-dependent NF-ήB activation and IFN-β synthesis downstream of Toll-like receptor 3 and 4. European Journal of Immunology, 2005, 35, 2200-2209.	2.9	95
151	Recognition of cytosolic <scp>DNA</scp> by c <scp>GAS</scp> and other <scp>STING</scp> â€dependent sensors. European Journal of Immunology, 2014, 44, 634-640.	2.9	94
152	Innate immune sensing of DNA viruses. Virology, 2011, 411, 153-162.	2.4	93
153	Bacterial RNA:DNA hybrids are activators of the NLRP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7765-7770.	7.1	92
154	Selection of Molecular Structure and Delivery of RNA Oligonucleotides to Activate TLR7 versus TLR8 and to Induce High Amounts of IL-12p70 in Primary Human Monocytes. Journal of Immunology, 2009, 182, 6824-6833.	0.8	90
155	Sorting out Toll Signals. Cell, 2006, 125, 834-836.	28.9	88
156	Evasion of Innate Cytosolic DNA Sensing by a Gammaherpesvirus Facilitates Establishment of Latent Infection. Journal of Immunology, 2015, 194, 1819-1831.	0.8	88
157	Cutting Edge: AIM2 and Endosomal TLRs Differentially Regulate Arthritis and Autoantibody Production in DNase II–Deficient Mice. Journal of Immunology, 2015, 194, 873-877.	0.8	88
158	Herpesvirus tegument protein activates NF-κB signaling through the TRAF6 adaptor protein. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11335-11339.	7.1	86
159	A Role for the Adaptor Proteins TRAM and TRIF in Toll-like Receptor 2 Signaling. Journal of Biological Chemistry, 2015, 290, 3209-3222.	3.4	86
160	Allergens as Immunomodulatory Proteins: The Cat Dander Protein Fel d 1 Enhances TLR Activation by Lipid Ligands. Journal of Immunology, 2013, 191, 1529-1535.	0.8	85
161	NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1Î ² and neuronal toxicity. Cellular and Molecular Life Sciences, 2012, 69, 4215-4228.	5.4	83
162	Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7941-7950.	7.1	83

#	Article	IF	CITATIONS
163	Synthetic Oligodeoxynucleotides Containing Suppressive TTAGGG Motifs Inhibit AIM2 Inflammasome Activation. Journal of Immunology, 2013, 191, 3876-3883.	0.8	82
164	Cytosolic surveillance and antiviral immunity. Current Opinion in Virology, 2011, 1, 455-462.	5.4	80
165	STAT3 serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1 \hat{I}^2 expression. Nature Communications, 2020, 11, 3816.	12.8	78
166	Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon–mediated immunity. Nature Immunology, 2011, 12, 733-741.	14.5	76
167	TRIM13 Is a Negative Regulator of MDA5-Mediated Type I Interferon Production. Journal of Virology, 2014, 88, 10748-10757.	3.4	76
168	Characterization of Signaling Pathways Activated by the Interleukin 1 (IL-1) Receptor Homologue T1/ST2. Journal of Biological Chemistry, 2002, 277, 49205-49211.	3.4	75
169	Cyclicâ€diâ€GMP and cyclicâ€diâ€AMP activate the NLRP3 inflammasome. EMBO Reports, 2013, 14, 900-906.	4.5	75
170	Genetic Models Reveal cis and trans Immune-Regulatory Activities for lincRNA-Cox2. Cell Reports, 2018, 25, 1511-1524.e6.	6.4	73
171	Innate Immune Sensing of DNA. PLoS Pathogens, 2011, 7, e1001310.	4.7	72
172	A cGAS-Independent STING/IRF7 Pathway Mediates the Immunogenicity of DNA Vaccines. Journal of Immunology, 2016, 196, 310-316.	0.8	72
173	Overcoming innate immune barriers that impede AAV gene therapy vectors. Journal of Clinical Investigation, 2021, 131, .	8.2	72
174	HiChIRP reveals RNA-associated chromosome conformation. Nature Methods, 2019, 16, 489-492.	19.0	70
175	<i>Aim2</i> Deficiency Stimulates the Expression of IFN-Inducible <i>Ifi202</i> , a Lupus Susceptibility Murine Gene within the <i>Nba2</i> Autoimmune Susceptibility Locus. Journal of Immunology, 2010, 185, 7385-7393.	0.8	69
176	The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 963-974.	2.9	69
177	Absence of MyD88 Results in Enhanced TLR3-Dependent Phosphorylation of IRF3 and Increased IFN-β and RANTES Production. Journal of Immunology, 2011, 186, 2514-2522.	0.8	68
178	Nucleic Acid–Sensing Receptors: Rheostats of Autoimmunity and Autoinflammation. Journal of Immunology, 2015, 195, 3507-3512.	0.8	68
179	S6K-STING interaction regulates cytosolic DNA–mediated activation of the transcription factor IRF3. Nature Immunology, 2016, 17, 514-522.	14.5	67
180	Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4. Cell Reports, 2016, 15, 2438-2448.	6.4	66

#	Article	IF	CITATIONS
181	iGLuc: a luciferase-based inflammasome and protease activity reporter. Nature Methods, 2013, 10, 147-154.	19.0	65
182	Role of the Inflammasome-Caspase1/11-IL-1/18 Axis in Cigarette Smoke Driven Airway Inflammation: An Insight into the Pathogenesis of COPD. PLoS ONE, 2014, 9, e112829.	2.5	65
183	Tyrosine Phosphorylation of MyD88 Adapter-like (Mal) Is Critical for Signal Transduction and Blocked in Endotoxin Tolerance. Journal of Biological Chemistry, 2008, 283, 3109-3119.	3.4	63
184	The role of the interleukin-1/Toll-like receptor superfamily in inflammation and host defence. Microbes and Infection, 2000, 2, 933-943.	1.9	62
185	A TIR Domain Variant of MyD88 Adapter-like (Mal)/TIRAP Results in Loss of MyD88 Binding and Reduced TLR2/TLR4 Signaling. Journal of Biological Chemistry, 2009, 284, 25742-25748.	3.4	62
186	RNA and β-Hemolysin of Group B Streptococcus Induce Interleukin-1β (IL-1β) by Activating NLRP3 Inflammasomes in Mouse Macrophages. Journal of Biological Chemistry, 2014, 289, 13701-13705.	3.4	62
187	Direct Binding to NLRP3 Pyrin Domain as a Novel Strategy to Prevent NLRP3â€Ðriven Inflammation and Gouty Arthritis. Arthritis and Rheumatology, 2020, 72, 1192-1202.	5.6	62
188	Topoisomerase II Is Required for Mitoxantrone to Signal Nuclear Factor κB Activation in HL60 Cells. Journal of Biological Chemistry, 2000, 275, 25231-25238.	3.4	60
189	Mice lacking Tbk1 activity exhibit immune cell infiltrates in multiple tissues and increased susceptibility to LPS-induced lethality. Journal of Leukocyte Biology, 2010, 88, 1171-1180.	3.3	59
190	Cell Type-Specific Recognition of Human Metapneumoviruses (HMPVs) by Retinoic Acid-Inducible Gene I (RIG-I) and TLR7 and Viral Interference of RIG-I Ligand Recognition by HMPV-B1 Phosphoprotein. Journal of Immunology, 2010, 184, 1168-1179.	0.8	58
191	Cytokines and Long Noncoding RNAs. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028589.	5.5	58
192	Toll-like receptor 3 signaling evokes a proinflammatory and proliferative phenotype in human vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2334-H2343.	3.2	55
193	RIG-I: tri-ing to discriminate between self and non-self RNA. Trends in Immunology, 2007, 28, 147-150.	6.8	53
194	DNA recognition in immunity and disease. Current Opinion in Immunology, 2013, 25, 13-18.	5.5	53
195	NLRâ€containing inflammasomes: Central mediators of host defense and inflammation. European Journal of Immunology, 2010, 40, 595-598.	2.9	51
196	Kinase Activities of RIPK1 and RIPK3 Can Direct IFN-β Synthesis Induced by Lipopolysaccharide. Journal of Immunology, 2017, 198, 4435-4447.	0.8	51
197	A Mitochondrial Micropeptide Is Required for Activation of the Nlrp3 Inflammasome. Journal of Immunology, 2020, 204, 428-437.	0.8	51
198	Cyclic GMP–AMP Synthase Is the Cytosolic Sensor of <i>Plasmodium falciparum</i> Genomic DNA and Activates Type I IFN in Malaria. Journal of Immunology, 2018, 200, 768-774.	0.8	50

#	Article	IF	CITATIONS
199	A Novel IFN Regulatory Factor 3-Dependent Pathway Activated by Trypanosomes Triggers IFN-Î ² in Macrophages and Fibroblasts. Journal of Immunology, 2008, 181, 7917-7924.	0.8	48
200	The long non-coding RNA LUCAT1 is a negative feedback regulator of interferon responses in humans. Nature Communications, 2020, 11, 6348.	12.8	48
201	Identification of Aim2 as a Sensor for DNA Vaccines. Journal of Immunology, 2015, 194, 630-636.	0.8	47
202	Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells. Immunity, 2021, 54, 1137-1153.e8.	14.3	46
203	TLR4 Is a Negative Regulator in Noninfectious Lung Inflammation. Journal of Immunology, 2010, 184, 5308-5314.	0.8	44
204	Role of MyD88 in Route-Dependent Susceptibility to Vesicular Stomatitis Virus Infection. Journal of Immunology, 2007, 178, 5173-5181.	0.8	43
205	Rift Valley fever virus infection induces activation of the NLRP3 inflammasome. Virology, 2014, 449, 174-180.	2.4	43
206	miR-718 represses proinflammatory cytokine production through targeting phosphatase and tensin homolog (PTEN). Journal of Biological Chemistry, 2017, 292, 5634-5644.	3.4	43
207	Inflammasomes and Anti-Viral Immunity. Journal of Clinical Immunology, 2010, 30, 632-637.	3.8	42
208	Detecting microRNA activity from gene expression data. BMC Bioinformatics, 2010, 11, 257.	2.6	42
209	Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus–like inflammation. Journal of Clinical Investigation, 2018, 128, 2966-2978.	8.2	41
210	Cutting Edge: DNA in the Lung Microenvironment during Influenza Virus Infection Tempers Inflammation by Engaging the DNA Sensor AIM2. Journal of Immunology, 2016, 196, 29-33.	0.8	38
211	Myxoma Virus Induces Type I Interferon Production in Murine Plasmacytoid Dendritic Cells via a TLR9/MyD88-, IRF5/IRF7-, and IFNAR-Dependent Pathway. Journal of Virology, 2011, 85, 10814-10825.	3.4	37
212	Gadolinium-based compounds induce NLRP3-dependent IL- $1\hat{l}^2$ production and peritoneal inflammation. Annals of the Rheumatic Diseases, 2015, 74, 2062-2069.	0.9	37
213	Activation of Stimulator of Interferon Genes (STING) and Sjögren Syndrome. Journal of Dental Research, 2018, 97, 893-900.	5.2	37
214	CNBP controls IL-12 gene transcription and Th1 immunity. Journal of Experimental Medicine, 2018, 215, 3136-3150.	8.5	36
215	Control of antiviral innate immune response by protein geranylgeranylation. Science Advances, 2019, 5, eaav7999.	10.3	36
216	IKKα negatively regulates IRF-5 function in a MyD88–TRAF6 pathway. Cellular Signalling, 2010, 22, 117-127.	3.6	35

#	Article	IF	CITATIONS
217	Phagosomal retention of <i>Francisella tularensis</i> results in TIRAP/Mal-independent TLR2 signaling. Journal of Leukocyte Biology, 2009, 87, 275-281.	3.3	35
218	AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. Journal of Experimental Medicine, 2021, 218, .	8.5	34
219	Aim2 Deficiency in Mice Suppresses the Expression of the Inhibitory FcÎ ³ Receptor (FcÎ ³ RIIB) through the Induction of the IFN-Inducible p202, a Lupus Susceptibility Protein. Journal of Immunology, 2011, 186, 6762-6770.	0.8	33
220	Inflammation in Mice Ectopically Expressing Human Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome-associated PSTPIP1 A230T Mutant Proteins. Journal of Biological Chemistry, 2013, 288, 4594-4601.	3.4	33
221	The Tyrosine Kinase c-Src Enhances RIG-I (Retinoic Acid-inducible Gene I)-elicited Antiviral Signaling. Journal of Biological Chemistry, 2009, 284, 19122-19131.	3.4	32
222	Interferon gene regulation: not all roads lead to Tolls. Trends in Molecular Medicine, 2005, 11, 403-411.	6.7	31
223	Dendritic Cell RIPK1 Maintains Immune Homeostasis by Preventing Inflammation and Autoimmunity. Journal of Immunology, 2018, 200, 737-748.	0.8	30
224	cGAS-STING Pathway Does Not Promote Autoimmunity in Murine Models of SLE. Frontiers in Immunology, 2021, 12, 605930.	4.8	30
225	Transcription of Inflammatory Genes: Long Noncoding RNA and Beyond. Journal of Interferon and Cytokine Research, 2015, 35, 79-88.	1.2	29
226	The Transcriptional Repressor BLIMP1 Curbs Host Defenses by Suppressing Expression of the Chemokine CCL8. Journal of Immunology, 2014, 192, 2291-2304.	0.8	28
227	Role of p38 and Early Growth Response Factor 1 in the Macrophage Response to Group B Streptococcus. Infection and Immunity, 2009, 77, 2474-2481.	2.2	27
228	3-Hydroxyl-3-methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitor (Statin)-induced 28-kDa Interleukin-11² Interferes with Mature IL-11² Signaling. Journal of Biological Chemistry, 2014, 289, 16214-16222.	3.4	27
229	STING Contributes to Abnormal Bone Formation Induced by Deficiency of DNase II in Mice. Arthritis and Rheumatology, 2017, 69, 460-471.	5.6	27
230	Interferon-γ and Granulocyte/Monocyte Colony-stimulating Factor Production by Natural Killer Cells Involves Different Signaling Pathways and the Adaptor Stimulator of Interferon Genes (STING). Journal of Biological Chemistry, 2013, 288, 10715-10721.	3.4	26
231	Lung Epithelial Cell Transcriptional Regulation as a Factor in COVID-19–associated Coagulopathies. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 687-697.	2.9	26
232	Role of Interferon Regulatory Factor 7 in T Cell Responses during Acute Lymphocytic Choriomeningitis Virus Infection. Journal of Virology, 2012, 86, 11254-11265.	3.4	25
233	Immature lung TNFR2â^' conventional DC 2 subpopulation activates moDCs to promote cyclic di-GMP mucosal adjuvant responses in vivo. Mucosal Immunology, 2019, 12, 277-289.	6.0	24
234	Ensuring vaccine safety. Science, 2020, 370, 1274-1275.	12.6	24

#	Article	IF	CITATIONS
235	SnapShot: Inflammasomes. Cell, 2013, 153, 272-272.e1.	28.9	23
236	SARM Regulates CCL5 Production in Macrophages by Promoting the Recruitment of Transcription Factors and RNA Polymerase II to the <i>Ccl5</i> Promoter. Journal of Immunology, 2014, 192, 4821-4832.	0.8	23
237	Long Non-coding RNA LincRNA-EPS Inhibits Host Defense Against Listeria monocytogenes Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 481.	3.9	23
238	The LPS receptor generates inflammatory signals from the cell surface. Journal of Endotoxin Research, 2003, 9, 375-380.	2.5	21
239	A Dectin-1-Caspase-8 Pathway Licenses Canonical Caspase-1 Inflammasome Activation and Interleukin-1Î ² Release in Response to a Pathogenic Fungus. Journal of Infectious Diseases, 2018, 217, 329-339.	4.0	21
240	Long non-coding RNAs in antiviral immunity. Seminars in Cell and Developmental Biology, 2021, 111, 126-134.	5.0	21
241	Regulation of Lipopolysaccharide-Induced Translation of Tumor Necrosis Factor-Alpha by the Toll-Like Receptor 4 Adaptor Protein TRAM. Journal of Innate Immunity, 2011, 3, 437-446.	3.8	20
242	Lipopolysaccharide sensing on the inside. Nature, 2013, 501, 173-175.	27.8	20
243	RNA Helicase Signaling Is Critical for Type I Interferon Production and Protection against Rift Valley Fever Virus during Mucosal Challenge. Journal of Virology, 2013, 87, 4846-4860.	3.4	20
244	Involvement of Nod2 in the innate immune response elicited by malarial pigment hemozoin. Microbes and Infection, 2015, 17, 184-194.	1.9	20
245	Salmonella-induced SipB-independent cell death requires Toll-like receptor-4 signalling via the adapter proteins Tram and Trif. Immunology, 2007, 122, 222-229.	4.4	19
246	<i>Helicobacter pylori</i> Activates the Early Growth Response 1 Protein in Gastric Epithelial Cells. Infection and Immunity, 2004, 72, 3549-3560.	2.2	18
247	IMMUNOLOGY: The Shape of Things to Come. Science, 2007, 316, 1574-1576.	12.6	18
248	Select Inflammasome Assembly. Science, 2012, 336, 420-421.	12.6	18
249	Overexpression of Membrane-Bound Fas Ligand (CD95L) Exacerbates Autoimmune Disease and Renal Pathology in Pristane-Induced Lupus. Journal of Immunology, 2013, 191, 2104-2114.	0.8	18
250	TRIL Is Involved in Cytokine Production in the Brain following <i>Escherichia coli</i> Infection. Journal of Immunology, 2014, 193, 1911-1919.	0.8	18
251	Inflammasomes. Current Biology, 2020, 30, R689-R694.	3.9	18
252	Myeloid cell nuclear differentiation antigen controls the pathogen-stimulated type I interferon cascade in human monocytes by transcriptional regulation of IRF7. Nature Communications, 2022, 13, 14	12.8	18

#	Article	IF	CITATIONS
253	Defective pro-IL- $1\hat{I}^2$ responses in macrophages from aged mice. Immunity and Ageing, 2012, 9, 27.	4.2	16
254	Cutting Edge: Novel <i>Tmem173</i> Allele Reveals Importance of STING N Terminus in Trafficking and Type I IFN Production. Journal of Immunology, 2016, 196, 547-552.	0.8	16
255	A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation. ELife, 2021, 10, .	6.0	16
256	cGAS Micro-Manages Genotoxic Stress. Immunity, 2017, 47, 616-617.	14.3	15
257	DUBbing down innate immunity. Nature Immunology, 2004, 5, 1010-1012.	14.5	14
258	Differential Gene Expression Downstream of Toll-like Receptors (TLRs). Journal of Biological Chemistry, 2010, 285, 17011-17019.	3.4	14
259	TRIF Signaling Is Essential for TLR4-Driven IgE Class Switching. Journal of Immunology, 2014, 192, 2651-2658.	0.8	14
260	The PYHIN Protein p205 Regulates the Inflammasome by Controlling Asc Expression. Journal of Immunology, 2017, 199, 3249-3260.	0.8	14
261	Molecular mechanisms and functions of pyroptosis. Journal of Molecular Biology, 2022, 434, 167461.	4.2	14
262	Radioresistant cells initiate lymphocyte-dependent lung inflammation and IFNÎ ³ -dependent mortality in STING gain-of-function mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
263	Viral Defense: It Takes Two MAVS to Tango. Cell, 2010, 141, 570-572.	28.9	12
264	Taking the STING out of TLR-driven autoimmune diseases: good, bad, or indifferent?. Journal of Leukocyte Biology, 2017, 101, 121-126.	3.3	12
265	Epithelial HNF4A shapes the intraepithelial lymphocyte compartment via direct regulation of immune signaling molecules. Journal of Experimental Medicine, 2022, 219, .	8.5	12
266	Pin-ning down immune responses to RNA viruses. Nature Immunology, 2006, 7, 555-557.	14.5	11
267	Synergy between Hematopoietic and Radioresistant Stromal Cells Is Required for Autoimmune Manifestations of DNase Ilâ^'/â^'IFNaRâ^'/â^' Mice. Journal of Immunology, 2016, 196, 1348-1354.	0.8	11
268	Caspase-8 mediates inflammation and disease in rodent malaria. Nature Communications, 2020, 11, 4596.	12.8	11
269	Lymphocyte crosstalk is required for monocyte-intrinsic trained immunity to Plasmodium falciparum. Journal of Clinical Investigation, 2022, 132, .	8.2	11
270	Catenin' on to nucleic acid sensing. Nature Immunology, 2010, 11, 466-468.	14.5	10

#	Article	IF	CITATIONS
271	Cellular nucleic acid–binding protein is essential for type I interferon–mediated immunity to RNA virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
272	hnRNPA2B1: Fueling Antiviral Immunity from the Nucleus. Molecular Cell, 2019, 76, 8-10.	9.7	9
273	Perspective: The RNA exosome, cytokine gene regulation and links to autoimmunity. Cytokine, 2015, 74, 175-180.	3.2	8
274	UMP-CMP kinase 2 gene expression in macrophages is dependent on the IRF3-IFNAR signaling axis. PLoS ONE, 2021, 16, e0258989.	2.5	8
275	Pattern recognition receptors: an update. Expert Review of Clinical Immunology, 2006, 2, 569-583.	3.0	7
276	Integr-ating IL-1α in Antiviral Host Defenses. Immunity, 2009, 31, 7-9.	14.3	7
277	GBPs take AIM at Francisella. Nature Immunology, 2015, 16, 443-444.	14.5	6
278	REL and BHLHE40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. Journal of Immunology, 2022, 208, 1352-1361.	0.8	6
279	STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity, 2015, 42, 199.	14.3	5
280	Intracellular Sensing of <scp>DNA</scp> in Autoinflammation and Autoimmunity. Arthritis and Rheumatology, 2022, 74, 1615-1624.	5.6	5
281	TLR2 Dimerization Blockade Allows Generation of Homeostatic Intestinal Macrophages under Acute Colitis Challenge. Journal of Immunology, 2020, 204, 707-717.	0.8	4
282	An RNA twist to T _H 17 cells. Science, 2016, 351, 1032-1032.	12.6	3
283	An unexpected role for RNA-sensing toll-like receptors in a murine model of DNA accrual. Clinical and Experimental Rheumatology, 2015, 33, S70-3.	0.8	3
284	Assembling the Inflammasome, Piece by Piece. Journal of Immunology, 2019, 203, 1093-1094.	0.8	2
285	Viral targeting of interferon regulatory factor-3 and type I interferon gene transcription. Future Virology, 2006, 1, 783-793.	1.8	1
286	Loosening the grip on nuclear cGAS. Nature Genetics, 2020, 52, 1269-1270.	21.4	1
287	HiChIRP: RNA-centric chromatin conformation. Protocol Exchange, 0, , .	0.3	1
288	LPSā•ç [∽] è∫žå†…ã§ã,,感知ã•ã,Œã,<. Nature Digest, 2013, 10, 31-33.	0.0	0

#	Article	IF	CITATIONS
289	The PYHIN Family of Molecules and their Functions Sensing dsDNA. , 2014, , 43-65.		0
290	Paula Pitha-Rowe 1937–2015. Nature Immunology, 2015, 16, 591-591.	14.5	0
291	Igniting the firestorm: The inflammasome in autoinflammatory syndromes. Journal of Allergy and Clinical Immunology, 2021, 148, 1470-1472.	2.9	Ο
292	TLR4 enhances resolution of lung inflammation by promoting neutrophil apoptosis. FASEB Journal, 2008, 22, 672.53.	0.5	0
293	Tyrosine Phosphorylation of MAL in TLR4 Signaling and Endotoxin Tolerance. FASEB Journal, 2008, 22, 672.26.	0.5	Ο
294	Toll-Like Receptors. , 0, , 107-122.		0
295	Proteogenomics Analysis Reveals Novel Micropeptides in Primary Human Immune Cells. Immuno, 2022, 2, 283-292.	1.5	Ο