Thalappil Pradeep

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8700617/publications.pdf

Version: 2024-02-01

554 papers 28,970 citations

7096 78 h-index 145 g-index

584 all docs

584 docs citations

times ranked

584

26046 citing authors

#	Article	IF	CITATIONS
1	Direct imaging of lattice planes in atomically precise noble metal cluster crystals using a conventional transmission electron microscope. Chemical Communications, 2022, 58, 1906-1909.	4.1	3
2	Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions. ACS Nanoscience Au, 2022, 2, 160-178.	4.8	18
3	Gas phase ion chemistry of titanium–oxofullerene with ligated solvents. Physical Chemistry Chemical Physics, 2022, 24, 2332-2343.	2.8	2
4	Industrial Utilization of Capacitive Deionization Technology for the Removal of Fluoride and Toxic Metal Ions (As ^{3+/5+} and Pb ²⁺). Global Challenges, 2022, 6, 2100129.	3.6	4
5	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	6.7	1
6	Shell-Isolated Assembly of Atomically Precise Nanoclusters on Gold Nanorods for Integrated Plasmonic-Luminescent Nanocomposites. Journal of Physical Chemistry B, 2022, 126, 1842-1851.	2.6	11
7	Role of Zinc Oxide in the Compounding Formulation on the Growth of Nonstoichiometric Copper Sulfide Nanostructures at the Brass–Rubber Interface. ACS Omega, 2022, 7, 9573-9581.	3.5	5
8	Molecular Engineering of Atomically Precise Silver Clusters into 2D and 3D Framework Solids. Chemistry of Materials, 2022, 34, 4703-4711.	6.7	18
9	Nanosensors for water quality monitoring. Separation Science and Technology, 2022, , 37-53.	0.2	2
10	Carboranethiol-Protected Propeller-Shaped Photoresponsive Silver Nanomolecule. Inorganic Chemistry, 2022, 61, 8593-8603.	4.0	4
11	Accelerated Non-Enzymatic Fatty Acid Esterification during Microdroplet Collision: A Method for Enhanced Sustainability. ACS Sustainable Chemistry and Engineering, 2022, 10, 8577-8587.	6.7	6
12	Cocrystals of Atomically Precise Noble Metal Nanoclusters. Small, 2021, 17, e2003981.	10.0	24
13	Differential risk factor profile of diabetes and atherosclerosis in rural, subâ€urban and urban regions of South India: The KMCHâ€Nonâ€communicable disease studies. Diabetic Medicine, 2021, 38, e14466.	2.3	1
14	Microdroplet Impact-Induced Spray Ionization Mass Spectrometry (MISI MS) for Online Reaction Monitoring and Bacteria Discrimination. Journal of the American Society for Mass Spectrometry, 2021, 32, 355-363.	2.8	2
15	New Routes for Multicomponent Atomically Precise Metal Nanoclusters. ACS Omega, 2021, 6, 1-16.	3.5	28
16	Gold cluster-loaded dendritic nanosilica: single particle luminescence and catalytic properties in the bulk. Nanoscale, 2021, 13, 9788-9797.	5.6	2
17	Selective Extraction of Gold by Niacin. ACS Sustainable Chemistry and Engineering, 2021, 9, 2129-2135.	6.7	19
18	A Covalently Integrated Reduced Graphene Oxide–lonâ€Exchange Resin Electrode for Efficient Capacitive Deionization. Advanced Materials Interfaces, 2021, 8, 2001998.	3.7	9

#	Article	IF	Citations
19	Scalable Drop-to-Film Condensation on a Nanostructured Hierarchical Surface for Enhanced Humidity Harvesting. ACS Applied Nano Materials, 2021, 4, 1540-1550.	5.0	8
20	Toward Vibrational Tomography of Citrate on Dynamically Changing Individual Silver Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 3553-3566.	3.1	7
21	Near-Infrared Chiral Plasmonic Microwires through Precision Assembly of Gold Nanorods on Soft Biotemplates. Journal of Physical Chemistry C, 2021, 125, 3256-3267.	3.1	20
22	2D-Molybdenum Disulfide-Derived Ion Source for Mass Spectrometry. ACS Nano, 2021, 15, 5023-5031.	14.6	0
23	Facile Crystallization of Ice I _h via Formaldehyde Hydrate in Ultrahigh Vacuum under Cryogenic Conditions. Journal of Physical Chemistry C, 2021, 125, 4532-4539.	3.1	10
24	Molecular Materials through Microdroplets: Synthesis of Protein-Protected Luminescent Clusters of Noble Metals. ACS Sustainable Chemistry and Engineering, 2021, 9, 4554-4563.	6.7	14
25	ACS Sustainable Chemistry & Engineering Welcomes Manuscripts on Advanced E-Waste Recycling. ACS Sustainable Chemistry and Engineering, 2021, 9, 3624-3625.	6.7	2
26	Lab to Market: Where the Rubber Meets the Road for Sustainable Chemical Technologies. ACS Sustainable Chemistry and Engineering, 2021, 9, 2987-2989.	6.7	3
27	Kinetics of Intercluster Reactions between Atomically Precise Noble Metal Clusters [Ag ₂₅ (DMBT) ₁₈] ^{â^'} and [Au ₂₅ (PET) ₁₈] ^{â^'} in Room Temperature Solutions. Journal of the American Chemical Society, 2021, 143, 6969-6980.	13.7	21
28	Triboelectric Generators for Sustainable Reduction Leading to Nanoparticles and Nanoclusters. ACS Sustainable Chemistry and Engineering, 2021, 9, 7431-7436.	6.7	2
29	Transformation of Nanodiamonds to Onion-like Carbons by Ambient Electrospray Deposition. Journal of Physical Chemistry C, 2021, 125, 10998-11006.	3.1	5
30	The Power of the United Nations Sustainable Development Goals in Sustainable Chemistry and Engineering Research. ACS Sustainable Chemistry and Engineering, 2021, 9, 8015-8017.	6.7	20
31	Design of a Waste Paperâ€Derived Chemically â€~Reactive' and Durable Functional Material with Tailorable Mechanical Property Following an Ambient and Sustainable Chemical Approach. Chemistry - an Asian Journal, 2021, 16, 1988-2001.	3.3	2
32	Comparative analyses of the nutraceutical potentialities of selected Indian traditional black rice (Oryza sativa L.) landraces. Oryza, 2021, 58, 295-309.	0.4	6
33	Isotopic Exchange of Atomically Precise Nanoclusters with Materials of Varying Dimensions: From Nanoscale to Bulk. Journal of Physical Chemistry C, 2021, 125, 16110-16117.	3.1	2
34	Interference of Phosphate in Adsorption of Arsenate and Arsenite over Confined Metastable Two-Line Ferrihydrite and Magnetite. Journal of Physical Chemistry C, 2021, 125, 22502-22512.	3.1	7
35	Aminoclayâ€Graphene Oxide Composite for Thinâ€Film Composite Reverse Osmosis Membranes with Unprecedented Water Flux and Fouling Resistance. Advanced Materials Interfaces, 2021, 8, 2100533.	3.7	6
36	Cellulosic Ternary Nanocomposite for Affordable and Sustainable Fluoride Removal. ACS Sustainable Chemistry and Engineering, 2021, 9, 12788-12799.	6.7	20

#	Article	IF	Citations
37	Selfâ€Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. Small, 2021, 17, e2005718.	10.0	76
38	Ambient microdroplet annealing of nanoparticles. Chemical Science, 2021, 12, 6370-6377.	7.4	7
39	Hierarchical Assembly of Atomically Precise Metal Clusters as a Luminescent Strain Sensor. ACS Applied Materials & Diterfaces, 2021, 13, 6496-6504.	8.0	14
40	Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster. ACS Nano, 2021, 15, 15781-15793.	14.6	35
41	Nanotechnology for Sustainability in ACS Sustainable Chemistry & Engineering: Some Pointers. ACS Sustainable Chemistry and Engineering, 2021, 9, 14327-14329.	6.7	1
42	Desorption-induced evolution of cubic and hexagonal ices in an ultrahigh vacuum and cryogenic temperatures. Physical Chemistry Chemical Physics, 2021, 23, 24052-24060.	2.8	6
43	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	6.7	1
44	Challenges and Directions for Green Chemical Engineeringâ€"Role of Nanoscale Materials. , 2020, , 1-18.		11
45	Nanocellulose-Reinforced Organo-Inorganic Nanocomposite for Synergistic and Affordable Defluoridation of Water and an Evaluation of Its Sustainability Metrics. ACS Sustainable Chemistry and Engineering, 2020, 8, 139-147.	6.7	27
46	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	6.7	6
47	Intercluster Reactions Resulting in Silver-Rich Trimetallic Nanoclusters. Chemistry of Materials, 2020, 32, 611-619.	6.7	43
48	Formation of Cubic Ice via Clathrate Hydrate, Prepared in Ultrahigh Vacuum under Cryogenic Conditions. Journal of Physical Chemistry Letters, 2020, 11, 26-32.	4.6	18
49	Smartphone-based Fluoride-specific Sensor for Rapid and Affordable Colorimetric Detection and Precise Quantification at Sub-ppm Levels for Field Applications. ACS Omega, 2020, 5, 25253-25263.	3.5	40
50	Evaluating the Impact of Tailored Water Wettability on Performance of CO ₂ Capture. ACS Applied Energy Materials, 2020, 3, 10541-10549.	5.1	6
51	Atom transfer between precision nanoclusters and polydispersed nanoparticles: a facile route for monodisperse alloy nanoparticles and their superstructures. Nanoscale, 2020, 12, 22116-22128.	5.6	15
52	Dithiol-Induced Contraction in Ag ₁₄ Clusters and Its Manifestation in Electronic Structures. Journal of Physical Chemistry C, 2020, 124, 23426-23432.	3.1	8
53	Accelerated microdroplet synthesis of benzimidazoles by nucleophilic addition to protonated carboxylic acids. Chemical Science, 2020, 11, 12686-12694.	7.4	72
54	Reaction between Ag ₁₇ ⁺ and acetylene outside the mass spectrometer: dehydrogenation in the gas phase. Chemical Communications, 2020, 56, 15623-15626.	4.1	6

#	Article	IF	CITATIONS
55	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	6.7	2
56	Nonstoichiometric Copper Sulfide Nanostructures at the Brass–Rubber Interface: Implications for Rubber Vulcanization Temperature in the Tire Industry. ACS Applied Nano Materials, 2020, 3, 7685-7694.	5.0	7
57	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & Engineering </i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.	6.7	2
58	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	6.7	0
59	Dual emitting Ag ₃₅ nanocluster protected by 2-pyrene imine thiol. Chemical Communications, 2020, 56, 12550-12553.	4.1	15
60	Atomically Precise Noble Metal Cluster-Assembled Superstructures in Water: Luminescence Enhancement and Sensing. Journal of Physical Chemistry C, 2020, 124, 22298-22303.	3.1	29
61	[Ag ₁₅ H ₁₃ (DPPH) ₅ 22+ and [Ag ₂₇ H ₂₂ (DPPB) ₇] ³⁺ : Two New Hydride and Phosphine Co-Protected Clusters and Their Fragmentation Leading to Naked Clusters, Ag ₁₃ ⁺ . Journal of Physical Chemistry C,	3.1	10
62	2020, 124, 20569-20577. Manifestation of Structural Differences of Atomically Precise Cluster-Assembled Solids in Their Mechanical Properties. Chemistry of Materials, 2020, 32, 7973-7984.	6.7	14
63	Enhanced Capture of Particulate Matter by Molecularly Charged Electrospun Nanofibers. ACS Sustainable Chemistry and Engineering, 2020, 8, 7762-7773.	6.7	19
64	Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS Nano, 2020, 14, 6420-6435.	14.6	127
65	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	6.7	0
66	Entrapping Atomically Precise Clusters in Cyclodextrin-Functionalized Aminoclay Sheets: Synthesis and Enhanced Luminescence. Industrial & Engineering Chemistry Research, 2020, 59, 12737-12744.	3.7	4
67	Expectations for Manuscripts with Nanoscience and Nanotechnology Elements in <i>ACS Sustainable Chemistry & Engineering < /i>. ACS Sustainable Chemistry and Engineering, 2020, 8, 7751-7752.</i>	6.7	5
68	Reply to Letter to the Editor regarding Velmurugan et al. "Association of co-accumulation of arsenic and organophosphate insecticides with diabetes and atherosclerosis in a rural agricultural community: KMCH-NNCD-I study―written by Barr DB & Jaacks LM. Acta Diabetologica, 2020, 57, 1127-1128.	2.5	0
69	Ferrofluid Microdroplet Splitting for Populationâ€Based Microfluidics and Interfacial Tensiometry. Advanced Science, 2020, 7, 2000359.	11.2	26
70	Ultrafast Intersystem Crossing in Isolated Ag ₂₉ (BDT) ₁₂ ^{3–} Probed by Time-Resolved Pump–Probe Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 2675-2681.	4.6	27
71	Arsenic Toxicity: Carbonate's Counteraction Revealed. ACS Sustainable Chemistry and Engineering, 2020, 8, 5067-5075.	6.7	2
72	Fullerene-Mediated Aggregation of M ₂₅ (SR) ₁₈ [–] (M = Ag, Au) Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 14891-14900.	3.1	13

#	Article	IF	Citations
73	Probing Subtle Changes in Molecular Orientations Using Ambient Electrospray Deposition Raman Spectroscopy (AESD RS). Journal of Physical Chemistry C, 2020, 124, 16644-16651.	3.1	11
74	Ligand structure and charge state-dependent separation of monolayer protected Au ₂₅ clusters using non-aqueous reversed-phase HPLC. Analyst, The, 2020, 145, 1337-1345.	3.5	4
75	Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose, 2020, 27, 10719-10732.	4.9	48
76	Nonenzymatic Glucose Sensing Using Ni ₆₀ Nb ₄₀ Nanoglass. ACS Nano, 2020, 14, 5543-5552.	14.6	55
77	Expectations for Manuscripts on Catalysis in <i>ACS Sustainable Chemistry & Engineering </i> ACS Sustainable Chemistry and Engineering, 2020, 8, 4995-4996.	6.7	14
78	Iron assisted formation of CO ₂ over condensed CO and its relevance to interstellar chemistry. Physical Chemistry Chemical Physics, 2020, 22, 8491-8498.	2.8	5
79	Association of co-accumulation of arsenic and organophosphate insecticides with diabetes and atherosclerosis in a rural agricultural community: KMCH-NNCD-I study. Acta Diabetologica, 2020, 57, 1159-1168.	2.5	20
80	An Unprecedented Thousandfold Enhancement of Antimicrobial Activity of Metal Ions by Selective Anion Treatment. Advances in Science, Technology and Innovation, 2020, , 433-435.	0.4	0
81	Waterborne Fluorineâ€Free Superhydrophobic Surfaces Exhibiting Simultaneous CO 2 and Humidity Sorption. Advanced Materials Interfaces, 2019, 6, 1901013.	3.7	10
82	<i>In situ</i> monitoring of electrochemical reactions through CNT-assisted paper cell mass spectrometry. Analyst, The, 2019, 144, 5404-5412.	3.5	9
83	Highly Sensitive As ³⁺ Detection Using Electrodeposited Nanostructured MnO <i></i> and Phase Evolution of the Active Material during Sensing. ACS Applied Materials & Detection of the Active Materials & Detection of the Active Materials & Detection of the Materials & Detection of the Active Materials & Detection & Detection of the Active Materials & Detection of the Active Materials & Detection of the Active Materials & Detection & Detecti	8.0	27
84	Reply to Choukroun et al.: IR and TPD data suggest the formation of clathrate hydrates in laboratory experiments simulating ISM. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14409-14410.	7.1	5
85	Conformational Changes of Protein upon Encapsulation of Noble Metal Clusters: An Investigation by Hydrogen/Deuterium Exchange Mass Spectrometry. Journal of Physical Chemistry C, 2019, 123, 17598-17605.	3.1	6
86	Metal-Ion-Induced Luminescence <i>Enhancement</i> in Protein Protected Gold Clusters. Journal of Physical Chemistry C, 2019, 123, 28969-28976.	3.1	18
87	Interparticle Reactions between Silver Nanoclusters Leading to Product Cocrystals by Selective Cocrystallization. ACS Nano, 2019, 13, 13365-13373.	14.6	31
88	Internalization of a Preformed Atomically Precise Silver Cluster in Proteins by Multistep Events and Emergence of Luminescent Counterparts Retaining Bioactivity. Journal of Physical Chemistry C, 2019, 123, 29408-29417.	3.1	14
89	Nanogymnastics: Visualization of Intercluster Reactions by High-Resolution Trapped Ion Mobility Mass Spectrometry. Journal of Physical Chemistry C, 2019, 123, 28477-28485.	3.1	19
90	Crystallization of a Supramolecular Coassembly of an Atomically Precise Nanoparticle with a Crown Ether., 2019, 1, 534-540.		27

#	Article	IF	CITATIONS
91	Tribochemical Degradation of Polytetrafluoroethylene in Water and Generation of Nanoplastics. ACS Sustainable Chemistry and Engineering, 2019, 7, 17554-17558.	6.7	12
92	The emerging interface of mass spectrometry with materials. NPG Asia Materials, 2019, 11, .	7.9	35
93	Appearance of SERS activity in single silver nanoparticles by laser-induced reshaping. Nanoscale, 2019, 11, 321-330.	5.6	25
94	Spatial distribution mapping of molecules in the grains of different rice landraces, using desorption electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 727-736.	1.5	6
95	Spontaneous Formation of Tetrahydrofuran Hydrate in Ultrahigh Vacuum. Journal of Physical Chemistry C, 2019, 123, 16300-16307.	3.1	18
96	Surface-Treated Nanofibers as High Current Yielding Breath Humidity Sensors for Wearable Electronics. ACS Applied Electronic Materials, 2019, 1, 951-960.	4.3	31
97	Geologically Inspired Monoliths for Sustainable Release of Essential Minerals into Drinking Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 11735-11744.	6.7	5
98	Sub-Parts-per-Trillion Level Detection of Analytes by Superhydrophobic Preconcentration Paper Spray Ionization Mass Spectrometry (SHPPSI MS). Analytical Chemistry, 2019, 91, 7118-7124.	6.5	29
99	Formation of an NIR-emitting Ag ₃₄ S ₃ SBB ₂₀ (CF ₃ COO) ₆ ²⁺ cluster from a hydride-protected silver cluster. Dalton Transactions, 2019, 48, 8664-8670.	3.3	16
100	Application and performance evaluation of a cost-effective vis- LED based fluidized bed reactor for the treatment of emerging contaminants. Chemosphere, 2019, 228, 629-639.	8.2	33
101	Confining an Ag ₁₀ Core in an Ag ₁₂ Shell: A Four-Electron Superatom with Enhanced Photoluminescence upon Crystallization. ACS Nano, 2019, 13, 5753-5759.	14.6	70
102	A covalently linked dimer of [Ag25(DMBT)18]â^'. Chemical Communications, 2019, 55, 5025-5028.	4.1	17
103	Capacitive Deionization (CDI): An Alternative Cost-Efficient Desalination Technique., 2019,, 165-202.		17
104	Electrospray deposition-induced ambient phase transition in copper sulphide nanostructures. Journal of Materials Chemistry A, 2019, 7, 6387-6394.	10.3	21
105	Effects of Chloride Concentration on the Water Disinfection Performance of Silver Containing Nanocellulose-based Composites. Scientific Reports, 2019, 9, 19505.	3.3	13
106	Ambient electrospray deposition Raman spectroscopy (AESD RS) using soft landed preformed silver nanoparticles for rapid and sensitive analysis. Analyst, The, 2019, 144, 7412-7420.	3.5	12
107	Mechanistic Elucidation of the Structure and Reactivity of Bare and Hydride-Protected Ag ₁₇ ⁺ Clusters. Journal of Physical Chemistry C, 2019, 123, 28494-28501.	3.1	7
108	Superhydrophobic Surfaces: Waterborne Fluorineâ€Free Superhydrophobic Surfaces Exhibiting Simultaneous CO ₂ and Humidity Sorption (Adv. Mater. Interfaces 23/2019). Advanced Materials Interfaces, 2019, 6, 1970147.	3.7	0

#	Article	IF	CITATIONS
109	UPLC and ESI-MS analysis of metabolites of Rauvolfia tetraphylla L. and their spatial localization using desorption electrospray ionization (DESI) mass spectrometric imaging. Phytochemistry, 2019, 159, 20-29.	2.9	31
110	Rapid isotopic exchange in nanoparticles. Science Advances, 2019, 5, eaau7555.	10.3	21
111	Camouflaging Structural Diversity: Coâ€crystallization of Two Different Nanoparticles Having Different Cores But the Same Shell. Angewandte Chemie, 2019, 131, 195-200.	2.0	9
112	Camouflaging Structural Diversity: Coâ€crystallization of Two Different Nanoparticles Having Different Cores But the Same Shell. Angewandte Chemie - International Edition, 2019, 58, 189-194.	13.8	80
113	Clathrate hydrates in interstellar environment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1526-1531.	7.1	44
114	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering </i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	6.7	5
115	Metal–Ligand Interface in the Chemical Reactions of Ligand-Protected Noble Metal Clusters. Langmuir, 2019, 35, 11243-11254.	3.5	32
116	Sustainable and Affordable Composites Built Using Microstructures Performing Better than Nanostructures for Arsenic Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 3222-3233.	6.7	26
117	Approaching Materials with Atomic Precision Using Supramolecular Cluster Assemblies. Accounts of Chemical Research, 2019, 52, 2-11.	15.6	152
118	Detection of Hydrocarbons by Laser Assisted Paper Spray Ionization Mass Spectrometry (LAPSI MS). Analytical Chemistry, 2018, 90, 4663-4668.	6.5	25
119	Synthesis of Silicon Nanoparticles from Rice Husk and their Use as Sustainable Fluorophores for White Light Emission. ACS Sustainable Chemistry and Engineering, 2018, 6, 6203-6210.	6.7	71
120	Metals in urine in relation to the prevalence of pre-diabetes, diabetes and atherosclerosis in rural India. Occupational and Environmental Medicine, 2018, 75, 661-667.	2.8	22
121	Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods. Angewandte Chemie, 2018, 130, 6632-6636.	2.0	10
122	Fabrication of a Waterborne Durable Superhydrophobic Material Functioning in Air and under Oil. Advanced Materials Interfaces, 2018, 5, 1701523.	3.7	20
123	Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods. Angewandte Chemie - International Edition, 2018, 57, 6522-6526.	13.8	57
124	Probing the Mechanical Response of Luminescent Dithiolâ€Protected Ag ₂₉ (BDT) ₁₂ (TPP) ₄ Cluster Crystals. ChemNanoMat, 2018, 4, 401-408.	2.8	6
125	Fullerene-Functionalized Monolayer-Protected Silver Clusters: [Ag ₂₉ (BDT) ₁₂ (C ₆₀) _{<i>n</i>}] ^{3–} (<i>n</i> =)	Т јіБТ Qq1	1 0 9784314
126	Understanding proton capture and cation-induced dimerization of [Ag ₂₉ (BDT) ₁₂] ^{3â^²} clusters by ion mobility mass spectrometry. Physical Chemistry Chemical Physics, 2018, 20, 7593-7603.	2.8	29

#	Article	IF	Citations
127	Poly(ether sulfone) Nanofibers Impregnated with β-Cyclodextrin for Increased Micropollutant Removal from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 2942-2953.	6.7	37
128	Rapid reaction of MoS $<$ sub $>$ 2 $<$ /sub $>$ nanosheets with Pb $<$ sup $>$ 2+ $<$ /sup $>$ and Pb $<$ sup $>$ 4+ $<$ /sup $>$ ions in solution. Nanoscale, 2018, 10, 1807-1814.	5.6	14
129	An Aqueous Composition for Lubricantâ€Free, Robust, Slippery, Transparent Coatings on Diverse Substrates. Global Challenges, 2018, 2, 1700097.	3.6	5
130	Advancing the Use of Sustainability Metrics in <i>ACS Sustainable Chemistry & Engineering </i> ACS Sustainable Chemistry and Engineering, 2018, 6, 1-1.	6.7	34
131	Consolidation of functionalized graphene at ambient temperature via mechano-chemistry. Carbon, 2018, 134, 491-499.	10.3	22
132	Self-propagated combustion synthesis of few-layered graphene: an optical properties perspective. Nanoscale, 2018, 10, 7581-7588.	5.6	10
133	Phase Transfer Induced Enhanced Stability of Monolayer Protected Silver Quantum Clusters. Journal of Cluster Science, 2018, 29, 41-48.	3.3	4
134	Early Detection of Biofouling on Water Purification Membranes by Ambient Ionization Mass Spectrometry Imaging. Analytical Chemistry, 2018, 90, 988-997.	6.5	18
135	Propane and propane–water interactions: a study at cryogenic temperatures. Physical Chemistry Chemical Physics, 2018, 20, 1838-1847.	2.8	10
136	A thirty-fold photoluminescence enhancement induced by secondary ligands in monolayer protected silver clusters. Nanoscale, 2018, 10, 20033-20042.	5.6	65
137	Atomically precise cluster-based white light emitters $\S As. Journal of Chemical Sciences, 2018, 130, 1.	1.5	5
138	Isomerism in Supramolecular Adducts of Atomically Precise Nanoparticles. Journal of the American Chemical Society, 2018, 140, 13590-13593.	13.7	40
139	Holey MoS ₂ Nanosheets with Photocatalytic Metal Rich Edges by Ambient Electrospray Deposition for Solar Water Disinfection. Global Challenges, 2018, 2, 1800052.	3.6	26
140	Interconversions of Structural Isomers of [PdAu ₈ [PdAu ₈ (PPh ₃) ₈] ²⁺ and [Au ₉ (PPh ₃) ₈] ³⁺ Revealed by Ion Mobility Mass Spectrometry. Journal of Physical Chemistry C, 2018, 122, 23123-23128.	3.1	23
141	Monolayer-Protected Noble-Metal Clusters as Potential Standards for Negative-Ion Mass Spectrometry. Analytical Chemistry, 2018, 90, 11351-11357.	6.5	5
142	Towards atomically precise luminescent Ag ₂ S clusters separable by thin layer chromatography. Journal of Materials Chemistry C, 2018, 6, 5754-5759.	5.5	5
143	Detection of [Au $<$ sub $>$ 25 $<$ /sub $>$ (PET) $<$ sub $>$ 18 $<$ /sub $>$ (O $<$ sub $>$ 2 $<$ /sub $>$) $<$ sub $>$ 4 $>$ n $<$ 1 $><1sub>]<sup>6^{\circ}4<sup>(<1>>1, 2, 3) Species by Mass Spectrometry. Journal of Physical Chemistry C, 2018, 122, 19455-19462.$	3.1	16
144	Electrohydrodynamic Assembly of Ambient Ion-Derived Nanoparticles to Nanosheets at Liquid Surfaces. Journal of Physical Chemistry C, 2018, 122, 17777-17783.	3.1	11

#	Article	IF	CITATIONS
145	Preparation of gas phase naked silver cluster cations outside a mass spectrometer from ligand protected clusters in solution. Nanoscale, 2018, 10, 15714-15722.	5.6	13
146	Patterned Nanobrush Nature Mimics with Unprecedented Waterâ€Harvesting Efficiency. Advanced Materials Interfaces, 2018, 5, 1800667.	3.7	19
147	Bent Keto Form of Curcumin, Preferential Stabilization of Enol by Piperine, and Isomers of Curcuminâ^©Cyclodextrin Complexes: Insights from Ion Mobility Mass Spectrometry. Analytical Chemistry, 2018, 90, 8776-8784.	6.5	15
148	Polymorphism of Ag ₂₉ (BDT) ₁₂ (TPP) ₄ ^{3â^'} cluster: interactions of secondary ligands and their effect on solid state luminescence. Nanoscale, 2018, 10, 9851-9855.	5.6	61
149	Species-Specific Uptake of Arsenic on Confined Metastable 2-Line Ferrihydrite: A Combined Raman-X-Ray Photoelectron Spectroscopy Investigation of the Adsorption Mechanism. ACS Sustainable Chemistry and Engineering, 2018, 6, 9990-10000.	6.7	29
150	Dissociation of Gas Phase Ions of Atomically Precise Silver Clusters Reflects Their Solution Phase Stability. Journal of Physical Chemistry C, 2017, 121, 10971-10981.	3.1	49
151	Synthesis, characterization and performance of visible light active C-TiO 2 for pharmaceutical photodegradation. Journal of Environmental Chemical Engineering, 2017, 5, 757-767.	6.7	41
152	Interaction of Acetonitrile with Alcohols at Cryogenic Temperatures. Journal of Physical Chemistry C, 2017, 121, 2822-2835.	3.1	11
153	Solar mediated reduction of graphene oxide. RSC Advances, 2017, 7, 957-963.	3.6	95
154	Atomically Precise Noble Metal Clusters Harvest Visible Light to Produce Energy. ChemistrySelect, 2017, 2, 1454-1463.	1.5	22
155	High-Yield Paste-Based Synthesis of Thiolate-Protected Silver Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 10964-10970.	3.1	19
156	Qualitative observation of reversible phase change in astrochemical ethanethiol ices using infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 178, 166-170.	3.9	18
157	Synergistic Effect in Green Extraction of Noble Metals and Its Consequences. European Journal of Inorganic Chemistry, 2017, 2017, 3072-3079.	2.0	5
158	Unusual reactivity of dithiol protected clusters in comparison to monothiol protected clusters: studies using Ag ₅₁ (BDT) ₁₉ (TPP) ₃ and Ag ₂₉ (BDT) ₁₂ (TPP) ₄ . Nanoscale, 2017, 9, 1068-1077.	5.6	40
159	Confined Metastable 2â€Line Ferrihydrite for Affordable Pointâ€ofâ€Use Arsenicâ€Free Drinking Water. Advanced Materials, 2017, 29, 1604260.	21.0	49
160	<i>ACS Sustainable Chemistry & Description of the continues of the contin</i>	6.7	0
161	Manifestation of Geometric and Electronic Shell Structures of Metal Clusters in Intercluster Reactions. ACS Nano, 2017, 11, 6015-6023.	14.6	43
162	[Ag ₅₉ (2,5-DCBT) ₃₂] ^{3â^²} : a new cluster and a precursor for three well-known clusters. Nanoscale, 2017, 9, 8240-8248.	5.6	24

#	Article	IF	CITATIONS
163	Atomically Precise Transformations and Millimeterâ€Scale Patterning of Nanoscale Assemblies by Ambient Electrospray Deposition. Particle and Particle Systems Characterization, 2017, 34, 1700101.	2.3	4
164	Isomerism in Monolayer Protected Silver Cluster Ions: An Ion Mobility-Mass Spectrometry Approach. Journal of Physical Chemistry C, 2017, 121, 13421-13427.	3.1	39
165	Au ₂₂ Ir ₃ (PET) ₁₈ : An Unusual Alloy Cluster through Intercluster Reaction. Journal of Physical Chemistry Letters, 2017, 8, 2787-2793.	4.6	64
166	Green Synthesis of Protein-Protected Fluorescent Gold Nanoclusters (AuNCs): Reducing the Size of AuNCs by Partially Occupying the Ca ²⁺ Site by La ³⁺ in Apo-l±-Lactalbumin. ACS Sustainable Chemistry and Engineering, 2017, 5, 6064-6069.	6.7	32
167	Gold-Induced Unfolding of Lysozyme: Toward the Formation of Luminescent Clusters. Journal of Physical Chemistry C, 2017, 121, 13335-13344.	3.1	14
168	Four Years of ACS Sustainable Chemistry & Engineering: Reflections and New Developments. ACS Sustainable Chemistry and Engineering, 2017, 5, 1-2.	6.7	8
169	Sequential Dihydrogen Desorption from Hydride-Protected Atomically Precise Silver Clusters and the Formation of Naked Clusters in the Gas Phase. ACS Nano, 2017, 11, 11145-11151.	14.6	35
170	Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks. ACS Nano, 2017, 11, 11091-11099.	14.6	154
171	Probing Coordination Complexes by Carbon Nanotube-Assisted Low-Voltage Paper Spray Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 10696-10701.	6.5	13
172	Structureâ€"Reactivity Correlations in Metal Atom Substitutions of Monolayer-Protected Noble Metal Alloy Clusters. Journal of Physical Chemistry C, 2017, 121, 23224-23232.	3.1	19
173	Interparticle Reactions: An Emerging Direction in Nanomaterials Chemistry. Accounts of Chemical Research, 2017, 50, 1988-1996.	15.6	85
174	Unusual Accumulation of Silver in the Aleurone Layer of an Indian Rice (<i>Oryza sativa</i>) Landrace and Sustainable Extraction of the Metal. ACS Sustainable Chemistry and Engineering, 2017, 5, 8310-8315.	6.7	10
175	Dual Probe Sensors Using Atomically Precise Noble Metal Clusters. ACS Omega, 2017, 2, 7576-7583.	3.5	9
176	Reactivity of Monolayer Protected Silver Clusters toward Excess Ligand: A Calorimetric Study. Journal of Physical Chemistry C, 2017, 121, 26483-26492.	3.1	8
177	Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chemical Reviews, 2017, 117, 8208-8271.	47.7	1,694
178	Ultra-high sensitivity infra-red detection and temperature effects in a graphene–tellurium nanowire binary hybrid. Nanoscale, 2017, 9, 9284-9290.	5.6	31
179	Catalytic Paper Spray Ionization Mass Spectrometry with Metal Nanotubes and the Detection of 2,4,6-Trinitrotoluene. Analytical Chemistry, 2017, 89, 11378-11382.	6.5	29
180	Spatial and Temporal Distribution Pattern of Camptothecin in Seeds and Fruits of <i>Pyrenacantha volubilis</i> Hook. (Icacinaceae) during Different Fruit Developmental Stages. Current Science, 2017, 112, 1034.	0.8	4

#	Article	IF	Citations
181	Desorption Electrospray Ionization (DESI) Mass Spectrometric Imaging of the Distribution of Rohitukine in the Seedling of Dysoxylum binectariferum Hook. F. PLoS ONE, 2016, 11, e0158099.	2.5	15
182	Subsurface thermal behaviour of tissue mimics embedded with large blood vessels during plasmonic photo-thermal therapy. International Journal of Hyperthermia, 2016, 32, 765-777.	2.5	5
183	Toward a Janus Cluster: Regiospecific Decarboxylation of Ag ₄₄ (4-MBA) ₃₀ @Ag Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 15471-15479.	3.1	18
184	Defining Switching Efficiency of Multilevel Resistive Memory with PdO as an Example. Advanced Electronic Materials, 2016, 2, 1500286.	5.1	14
185	ACS Sustainable Chemistry & Engineering's Impact Factor Rises. ACS Sustainable Chemistry and Engineering, 2016, 4, 3597-3597.	6.7	0
186	Metallic Nanobrushes Made using Ambient Droplet Sprays. Advanced Materials, 2016, 28, 2223-2228.	21.0	27
187	Clusterâ€Mediated Crossed Bilayer Precision Assemblies of 1D Nanowires. Advanced Materials, 2016, 28, 2827-2833.	21.0	41
188	Extraction of Silver by Glucose. Angewandte Chemie, 2016, 128, 7908-7912.	2.0	6
189	Introducing the Inaugural <i>ACS Sustainable Chemistry & Engineering </i> Lectureship Awards. ACS Sustainable Chemistry and Engineering, 2016, 4, 2898-2898.	6.7	1
190	Joyful Years with the Journal: Balancing the Editor–Professor Life. ACS Sustainable Chemistry and Engineering, 2016, 4, 6252-6252.	6.7	1
191	Influence of 2D rGO nanosheets on the properties of OPC paste. Cement and Concrete Composites, 2016, 70, 48-59.	10.7	85
192	Highly luminescent monolayer protected Ag ₅₆ Se ₁₃ S ₁₅ clusters. Journal of Materials Chemistry C, 2016, 4, 5572-5577.	5.5	12
193	Electrospun Nanofiber Mats as "Smart Surfaces―for Desorption Electrospray Ionization Mass Spectrometry (DESI MS)-Based Analysis and Imprint Imaging. Analytical Chemistry, 2016, 88, 5710-5717.	6.5	32
194	Unusual reactivity of MoS2nanosheets. Nanoscale, 2016, 8, 10282-10290.	5.6	9
195	A generic approach for mechano-chemical reactions between carbonnanotubes of different functionalities. Carbon, 2016, 104, 196-202.	10.3	15
196	Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (<i>Zea mays</i> L.). Journal of Agricultural and Food Chemistry, 2016, 64, 3778-3788.	5.2	194
197	[Au ₂₅ (SR) ₁₈] ₂ ^{2â°'} : a noble metal cluster dimer in the gas phase. Chemical Communications, 2016, 52, 8397-8400.	4.1	56
198	Nucleolin-aptamer therapy in retinoblastoma: molecular changes and mass spectrometry–based imaging. Molecular Therapy - Nucleic Acids, 2016, 5, e358.	5.1	18

#	Article	lF	Citations
199	Cooking-Induced Corrosion of Metals. ACS Sustainable Chemistry and Engineering, 2016, 4, 4781-4787.	6.7	4
200	Direct Observation of the Formation Pathway of [Mo132] Keplerates. Inorganic Chemistry, 2016, 55, 8285-8291.	4.0	15
201	Diffusion-Controlled Simultaneous Sensing and Scavenging of Heavy Metal Ions in Water Using Atomically Precise Cluster–Cellulose Nanocrystal Composites. ACS Sustainable Chemistry and Engineering, 2016, 4, 6167-6176.	6.7	67
202	Structure-conserving spontaneous transformations between nanoparticles. Nature Communications, $2016, 7, 13447$.	12.8	106
203	Diffusion and Crystallization of Dichloromethane within the Pores of Amorphous Solid Water. Journal of Physical Chemistry C, 2016, 120, 13474-13484.	3.1	11
204	Thio residue from thermal processing of cometary ices containing carbon disulfide and ammonia. Advances in Space Research, 2016, 58, 438-443.	2.6	2
205	A facile method to fabricate carbon nanostructures via the self-assembly of polyacrylonitrile/poly(methyl methacrylate-b-polyacrylonitrile) AB/B′ type block copolymer/homopolymer blends. RSC Advances, 2016, 6, 55792-55799.	3.6	11
206	Sparingly Soluble Constant Carbonate Releasing Inert Monolith for Enhancement of Antimicrobial Silver Action and Sustainable Utilization. ACS Sustainable Chemistry and Engineering, 2016, 4, 4043-4049.	6.7	8
207	Monitoring of changes in lipid profiles during PLK1 knockdown in cancer cells using DESI MS. Analytical and Bioanalytical Chemistry, 2016, 408, 5623-5632.	3.7	11
208	Extraction of Silver by Glucose. Angewandte Chemie - International Edition, 2016, 55, 7777-7781.	13.8	21
209	Rapid dehalogenation of pesticides and organics at the interface of reduced graphene oxide–silver nanocomposite. Journal of Hazardous Materials, 2016, 308, 192-198.	12.4	57
210	Intercluster Reactions between Au ₂₅ (SR) ₁₈ and Ag ₄₄ (SR) ₃₀ . Journal of the American Chemical Society, 2016, 138, 140-148.	13.7	154
211	Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization. Carbon, 2016, 99, 375-383.	10.3	134
212	Biological Desorption Electrospray Ionization Mass Spectrometry (DESI MS) $\hat{a} \in ``unequivocal role of crucial ionization factors, solvent system and substrates. TrAC - Trends in Analytical Chemistry, 2016, 78, 109-119.$	11.4	18
213	Possible isomers in ligand protected Ag ₁₁ cluster ions identified by ion mobility mass spectrometry and fragmented by surface induced dissociation. Chemical Communications, 2016, 52, 3805-3808.	4.1	39
214	Choline-induced selective fluorescence quenching of acetylcholinesterase conjugated Au@BSA clusters. Biosensors and Bioelectronics, 2016, 81, 68-74.	10.1	29
215	Developmental patterning and segregation of alkaloids in areca nut (seed of Areca catechu) revealed by magnetic resonance and mass spectrometry imaging. Phytochemistry, 2016, 125, 35-42.	2.9	44
216	Atomically precise and monolayer protected iridium clusters in solution. RSC Advances, 2016, 6, 26679-26688.	3.6	14

#	Article	IF	Citations
217	Evolution of atomically precise clusters through the eye of mass spectrometry. SPR Nanoscience, 2016, , 343-385.	0.6	4
218	Identification of effective substrates for the direct analysis of lipids from cell lines using desorption electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 349-356.	1.5	7
219	Advancing the Use of Sustainability Metrics. ACS Sustainable Chemistry and Engineering, 2015, 3, 2359-2360.	6.7	22
220	Rapid Synthesis of C-TiO ₂ : Tuning the Shape from Spherical to Rice Grain Morphology for Visible Light Photocatalytic Application. ACS Sustainable Chemistry and Engineering, 2015, 3, 1321-1329.	6.7	75
221	Size Evolution of Protein-Protected Gold Clusters in Solution: A Combined SAXS–MS Investigation. Journal of Physical Chemistry C, 2015, 119, 2148-2157.	3.1	29
222	Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes. Nature Communications, 2015, 6, 7291.	12.8	35
223	Translocation of uranium from water to foodstuff while cooking. Journal of Hazardous Materials, 2015, 297, 183-190.	12.4	3
224	In vitro colocalization of plasmonic nano-biolabels and biomolecules using plasmonic and Raman scattering microspectroscopy. Journal of Biomedical Optics, 2015, 20, 1.	2.6	8
225	Efficient red luminescence from organic-soluble Au ₂₅ clusters by ligand structure modification. Nanoscale, 2015, 7, 14305-14315.	5.6	40
226	Rapid detection of Fusarium wilt in basil (Ocimum sp.) leaves by desorption electrospray ionization mass spectrometry (DESI MS) imaging. RSC Advances, 2015, 5, 50512-50522.	3.6	6
227	The Impact of <i>ACS Sustainable Chemistry & Engineering </i> Engineering, 2015, 3, 1262-1262.	6.7	1
228	Zero Volt Paper Spray Ionization and Its Mechanism. Analytical Chemistry, 2015, 87, 6786-6793.	6.5	63
229	Ambient preparation and reactions of gas phase silver cluster cations and anions. Physical Chemistry Chemical Physics, 2015, 17, 18364-18373.	2.8	15
230	Initial Growth Kinetics of Luminescent Quantum Clusters of Silver within Albumin Family Protein Templates. Journal of Physical Chemistry C, 2015, 119, 9988-9994.	3.1	4
231	Noble metal clusters protected with mixed proteins exhibit intense photoluminescence. RSC Advances, 2015, 5, 48039-48045.	3.6	32
232	Interaction of Acetonitrile with Water-Ice: An Infrared Spectroscopic Study. Journal of Physical Chemistry C, 2015, 119, 11524-11532.	3.1	24
233	Ambient ionization mass spectrometry imaging of rohitukine, a chromone anti-cancer alkaloid, during seed development in Dysoxylum binectariferum Hook.f (Meliaceae). Phytochemistry, 2015, 116, 104-110.	2.9	38
234	Simultaneous Dehalogenation and Removal of Persistent Halocarbon Pesticides from Water Using Graphene Nanocomposites: A Case Study of Lindane. ACS Sustainable Chemistry and Engineering, 2015, 3, 1155-1163.	6.7	69

#	Article	IF	Citations
235	Anisotropic Molecular Ionization at $1\mathrm{V}$ from Tellurium Nanowires (Te NWs). Analytical Chemistry, 2015, 87, 10792-10798.	6.5	16
236	Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20156-20163.	8.0	54
237	A Unified Framework for Understanding the Structure and Modifications of Atomically Precise Monolayer Protected Gold Clusters. Journal of Physical Chemistry C, 2015, 119, 27768-27785.	3.1	53
238	A low cost approach to synthesize sand like AlOOH nanoarchitecture (SANA) and its application in defluoridation of water. Journal of Environmental Chemical Engineering, 2015, 3, 1303-1311.	6.7	33
239	Communication: Vacuum ultraviolet photoabsorption of interstellar icy thiols. Journal of Chemical Physics, 2014, 141, 231101.	3.0	7
240	Controlled synthesis and characterization of the elusive thiolated Ag ₅₅ cluster. Dalton Transactions, 2014, 43, 17904-17907.	3.3	18
241	Approaching Sensitivity of Tens of Ions Using Atomically Precise Cluster–Nanofiber Composites. Analytical Chemistry, 2014, 86, 10996-11001.	6.5	38
242	Optical rotation by plasmonic circular dichroism of isolated gold nanorod aggregates. Applied Physics Letters, 2014, 105, .	3.3	6
243	Synthesis of Atomically Precise Silver Clusters by Using the Miscibility Principle. European Journal of Inorganic Chemistry, 2014, 2014, 5271-5275.	2.0	15
244	Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids. Review of Scientific Instruments, 2014, 85, 014103.	1.3	16
245	NMR-based structure of anticancer drug mitoxantrone stacked with terminal base pair of DNA hexamer sequence d-(ATCGAT) ₂ . Journal of Biomolecular Structure and Dynamics, 2014, 32, 1164-1183.	3.5	17
246	Luminescent AgAu Alloy Clusters Derived from Ag Nanoparticles – Manifestations of Tunable Au ^I –Cu ^I Metallophilic Interactions. European Journal of Inorganic Chemistry, 2014, 2014, 908-916.	2.0	23
247	Supramolecular Functionalization and Concomitant Enhancement in Properties of Au ₂₅ Clusters. ACS Nano, 2014, 8, 139-152.	14.6	94
248	Sequential Electrochemical Unzipping of Single-Walled Carbon Nanotubes to Graphene Ribbons Revealed by <i>in Situ</i> i> Raman Spectroscopy and Imaging. ACS Nano, 2014, 8, 234-242.	14.6	38
249	Mixed-Monolayer-Protected Au \times sub \times 25 \times /sub \times Clusters with Bulky Calix[4] arene Functionalities. Journal of Physical Chemistry Letters, 2014, 5, 585-589.	4.6	34
250	Isolation and Tandem Mass Spectrometric Identification of a Stable Monolayer Protected Silver–Palladium Alloy Cluster. Journal of Physical Chemistry Letters, 2014, 5, 3757-3762.	4.6	19
251	Simple and Efficient Separation of Atomically Precise Noble Metal Clusters. Analytical Chemistry, 2014, 86, 12185-12190.	6.5	69
252	Molecular Ionization from Carbon Nanotube Paper. Angewandte Chemie - International Edition, 2014, 53, 5936-5940.	13.8	85

#	Article	IF	Citations
253	Blue emitting undecaplatinum clusters. Nanoscale, 2014, 6, 8561-8564.	5.6	27
254	Luminescent iron clusters in solution. Nanoscale, 2014, 6, 1848-1854.	5.6	28
255	Ag ₁₁ (SG) ₇ : A New Cluster Identified by Mass Spectrometry and Optical Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 21722-21729.	3.1	59
256	Reversible formation of Ag ₄₄ from selenolates. Nanoscale, 2014, 6, 14190-14194.	5.6	14
257	Coalescence of Atomically Precise Clusters on Graphenic Surfaces. Journal of Physical Chemistry C, 2014, 118, 13959-13964.	3.1	13
258	Detection and Extraction of Pesticides from Drinking Water Using Nanotechnologies. , 2014, , 241-270.		3
259	Surface complexation of fluoride at the activated nano-gibbsite water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 124-130.	4.7	28
260	Emergence of metallicity in silver clusters in the 150 atom regime: a study of differently sized silver clusters. Nanoscale, 2014, 6, 8024-8031.	5.6	48
261	Noble Metal Nanosystems for the Detection and Removal of Pollutants in Drinking Water. , 2014, , 317-342.		1
262	Noble Metal Clusters: Applications in Energy, Environment, and Biology. Particle and Particle Systems Characterization, 2014, 31, 1017-1053.	2.3	289
263	Manifestation of the Difference in Reactivity of Silver Clusters in Contrast to Its Ions and Nanoparticles: The Growth of Metal Tipped Te Nanowires. Chemistry of Materials, 2014, 26, 3049-3056.	6.7	24
264	Studying Reaction Intermediates Formed at Graphenic Surfaces. Journal of the American Society for Mass Spectrometry, 2014, 25, 380-387.	2.8	9
265	Synthesis of Atomically Precise Silver Clusters by Using the Miscibility Principle. European Journal of Inorganic Chemistry, 2014, 2014, 5252-5252.	2.0	1
266	Using Ambient Ion Beams to Write Nanostructured Patterns for Surface Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 12528-12531.	13.8	45
267	Anomalous Subsurface Thermal Behavior in Tissue Mimics Upon Near Infrared Irradiation Mediated Photothermal Therapy. Journal of Biomedical Nanotechnology, 2014, 10, 405-414.	1.1	6
268	Rücktitelbild: Molecular Ionization from Carbon Nanotube Paper (Angew. Chem. 23/2014). Angewandte Chemie, 2014, 126, 6120-6120.	2.0	0
269	Spatiotemporal mapping of three dimensional rotational dynamics of single ultrasmall gold nanorods. Scientific Reports, 2014, 4, 5948.	3.3	28
270	Antimicrobial silver: An unprecedented anion effect. Scientific Reports, 2014, 4, 7161.	3.3	87

#	Article	IF	CITATIONS
271	CHAPTER 7. Noble Metal Clusters in Protein Templates. RSC Smart Materials, 2014, , 169-225.	0.1	4
272	Affordable point-of-use water purification using nanomaterials. Arsenic in the Environment Proceedings, 2014, , 13-14.	0.0	0
273	Understanding the Molecular Signatures in Leaves and Flowers by Desorption Electrospray Ionization Mass Spectrometry (DESI MS) Imaging. Journal of Agricultural and Food Chemistry, 2013, 61, 7477-7487.	5.2	74
274	Thiolate-protected Ag32 clusters: mass spectral studies of composition and insights into the Ag–thiolate structure from NMR. Nanoscale, 2013, 5, 9404.	5.6	77
275	Immobilized graphene-based composite from asphalt: Facile synthesis and application in water purification. Journal of Hazardous Materials, 2013, 246-247, 213-220.	12.4	63
276	A copper cluster protected with phenylethanethiol. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	55
277	Sunlight mediated synthesis and antibacterial properties of monolayer protected silver clusters. Journal of Materials Chemistry B, 2013, 1, 4059.	5.8	55
278	Atomically Precise Silver Clusters as New SERS Substrates. Journal of Physical Chemistry Letters, 2013, 4, 2769-2773.	4.6	40
279	Singleâ€Cell Investigations of Silver Nanoparticle–Bacteria Interactions. Particle and Particle Systems Characterization, 2013, 30, 1056-1062.	2.3	51
280	Atomically precise silver clusters for efficient chlorocarbon degradation. Journal of Materials Chemistry A, 2013, 1, 611-620.	10.3	34
281	Ag ₄₄ (SeR) ₃₀ : A Hollow Cage Silver Cluster with Selenolate Protection. Journal of Physical Chemistry Letters, 2013, 4, 3351-3355.	4.6	78
282	Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold. Nanoscale, 2013, 5, 12245.	5.6	14
283	Protein-encapsulated gold cluster aggregates: the case of lysozyme. Nanoscale, 2013, 5, 2009.	5.6	75
284	Electrical conductivity of ceramic and metallic nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 417, 39-46.	4.7	122
285	Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis. Nanoscale, 2013, 5, 4476.	5.6	95
286	New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules. Journal of Physical Chemistry Letters, 2013, 4, 1553-1564.	4.6	189
287	Probing Molecular Solids with Low-Energy lons. Annual Review of Analytical Chemistry, 2013, 6, 97-118.	5.4	6
288	Distinguishing Amorphous and Crystalline Ice by Ultralow Energy Collisions of Reactive Ions. Journal of Physical Chemistry C, 2013, 117, 12146-12152.	3.1	6

#	Article	IF	CITATIONS
289	Separation of Precise Compositions of Noble Metal Clusters Protected with Mixed Ligands. Journal of the American Chemical Society, 2013, 135, 4946-4949.	13.7	138
290	Facile and Rapid Synthesis of a Dithiol-Protected Ag ₇ Quantum Cluster for Selective Adsorption of Cationic Dyes. Langmuir, 2013, 29, 8125-8132.	3.5	64
291	Percolation network dynamicity and sheet dynamics governed viscous behavior of polydispersed graphene nanosheet suspensions. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	44
292	Graphene: A Reusable Substrate for Unprecedented Adsorption of Pesticides. Small, 2013, 9, 273-283.	10.0	196
293	Ultrafast photoinduced enhancement of nonlinear optical response in 15-atom gold clusters on indium tin oxide conducting film. Optics Express, 2013, 21, 8483.	3.4	26
294	Nanotoxicity: Singleâ€Cell Investigations of Silver Nanoparticle–Bacteria Interactions (Part. Part. Syst.) Tj ETQq0	0 0 0 rgBT	/8verlock 10
295	Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8459-8464.	7.1	122
296	Noble Metal Nanoparticles. , 2013, , 303-388.		31
297	Evolution of Atomically Precise Silver Clusters to Superlattice Crystals. Particle and Particle Systems Characterization, 2013, 30, 241-243.	2.3	13
298	Bare Clusters Derived from Protein Templates: Au ₂₅ ⁺ , Au ₃₈ ⁺ and Au ₁₀₂ ⁺ . ChemPhysChem, 2013, 14, 1272-1282.	2.1	23
299	Low-Energy Ionic Collisions at Molecular Solids. Chemical Reviews, 2012, 112, 5356-5411.	47.7	107
300	Graphene from Sugar and its Application in Water Purification. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4156-4163.	8.0	216
301	Low-Temperature Thermal Dissociation of Ag Quantum Clusters in Solution and Formation of Monodisperse Ag ₂ S Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 26019-26026.	3.1	29
302	Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nano Reviews, 2012, 3, 14767.	3.7	176
303	Synthesis and crystallization of lead–zirconium–titanate (PZT) nanotubes at the low temperature using carbon nanotubes (CNTs) as sacrificial templates. Advanced Powder Technology, 2012, 23, 647-654.	4.1	9
304	High temperature nucleation and growth of glutathione protected â^1/4Ag75 clusters. Chemical Communications, 2012, 48, 6788.	4.1	71
305	Selective Visual Detection of TNT at the Subâ€Zeptomole Level. Angewandte Chemie - International Edition, 2012, 51, 9596-9600.	13.8	109
306	Luminescent, Freestanding Composite Films of Au ₁₅ for Specific Metal Ion Sensing. ACS Applied Materials & Samp; Interfaces, 2012, 4, 639-644.	8.0	72

#	Article	IF	Citations
307	The Superstable 25 kDa Monolayer Protected Silver Nanoparticle: Measurements and Interpretation as an Icosahedral Ag ₁₅₂ (SCH ₂ CH ₂ Ph) ₆₀ Cluster. Nano Letters, 2012, 12, 5861-5866.	9.1	121
308	EFFECT OF NANOSCALE ZINC OXIDE PARTICLES ON THE GERMINATION, GROWTH AND YIELD OF PEANUT. Journal of Plant Nutrition, 2012, 35, 905-927.	1.9	754
309	Heterojunction double dumb-bell Ag2Te–Te–Ag2Te nanowires. Nanoscale, 2012, 4, 4537.	5 . 6	18
310	Emergence of Multicolor Photoluminescence in La _{0.67} Sr _{0.33} MnO ₃ Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 25623-25629.	3.1	37
311	One-Step Route to Luminescent Au ₁₈ SG ₁₄ in the Condensed Phase and Its Closed Shell Molecular Ions in the Gas Phase. Journal of Physical Chemistry Letters, 2012, 3, 1997-2002.	4.6	103
312	Understanding the Degradation Pathway of the Pesticide, Chlorpyrifos by Noble Metal Nanoparticles. Langmuir, 2012, 28, 2671-2679.	3.5	152
313	GRAPHENE FOR ENVIRONMENTAL AND BIOLOGICAL APPLICATIONS. International Journal of Modern Physics B, 2012, 26, 1242001.	2.0	38
314	Real time plasmonic spectroscopy of the interaction of Hg2+ with single noble metal nanoparticles. RSC Advances, 2012, 2, 10048.	3.6	21
315	Functional hybrid nickel nanostructures as recyclable SERS substrates: detection of explosives and biowarfare agents. Nanoscale, 2012, 4, 3427.	5.6	54
316	Rapid identification of molecular changes in tulsi (Ocimum sanctum Linn) upon ageing using leaf spray ionization mass spectrometry. Analyst, The, 2012, 137, 4559.	3.5	31
317	Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters. Chemical Communications, 2012, 48, 859-861.	4.1	43
318	Proteinâ€Directed Synthesis of NIRâ€Emitting, Tunable HgS Quantum Dots and their Applications in Metalâ€Ion Sensing. Small, 2012, 8, 3175-3184.	10.0	78
319	Luminescent, bimetallic AuAg alloy quantum clusters in protein templates. Nanoscale, 2012, 4, 4255.	5. 6	119
320	Luminescent Silver Clusters with Covalent Functionalization of Graphene. Journal of Physical Chemistry C, 2012, 116, 14057-14061.	3.1	25
321	Modeling sorption of fluoride on to iron rich laterite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 398, 69-75.	4.7	38
322	Luminescent sub-nanometer clusters for metal ion sensing: A new direction in nanosensors. Journal of Hazardous Materials, 2012, 211-212, 396-403.	12.4	63
323	Nanotechnologies for the treatment of water, air and soil. Journal of Hazardous Materials, 2012, 211-212, 1-2.	12.4	11
324	Ag ₇ Au ₆ : A 13â€Atom Alloy Quantum Cluster. Angewandte Chemie - International Edition, 2012, 51, 2155-2159.	13.8	210

#	Article	IF	Citations
325	Gold nanoparticle superlattices as functional solids for concomitant conductivity and SERS tuning. Nanoscale, 2011, 3, 1066-1072.	5.6	12
326	Functional noble metal nanoparticle superlattices grown at interfaces. Physical Chemistry Chemical Physics, 2011, 13, 19214.	2.8	15
327	First Principles Studies of Two Luminescent Molecular Quantum Clusters of Silver, Ag ₇ (H ₂ MSA) ₇ and Ag ₈ (H ₂ MSA) ₈ , Based on Experimental Fluorescence Spectra. lournal of Physical Chemistry C. 2011. 115. 20380-20387.	3.1	26
328	Hybrid A–B–A type nanowires through cation exchange. Nanoscale, 2011, 3, 4840.	5.6	16
329	Tissue imprint imaging by desorption electrospray ionization mass spectrometry. Analytical Methods, 2011, 3, 1910.	2.7	48
330	Quantum Clusters in Cavities: Trapped Au ₁₅ in Cyclodextrins. Chemistry of Materials, 2011, 23, 989-999.	6.7	124
331	Pristine and Hybrid Nickel Nanowires: Template-, Magnetic Field-, and Surfactant-Free Wet Chemical Synthesis and Raman Studies. Journal of Physical Chemistry C, 2011, 115, 4483-4490.	3.1	49
332	Formation of H ₂ ⁺ by Ultra-Low-Energy Collisions of Protons with Water Ice Surfaces. Journal of Physical Chemistry C, 2011, 115, 13813-13819.	3.1	8
333	Nano and sub-micro inclusions as probes into the origin and history of natural diamonds. Diamond and Related Materials, 2011, 20, 1050-1055.	3.9	2
334	Investigation into the Reactivity of Unsupported and Supported Ag ₇ and Ag ₈ Clusters with Toxic Metal Ions. Langmuir, 2011, 27, 8134-8143.	3.5	63
335	Reversible Assembly and Disassembly of Gold Nanorods Induced by EDTA and Its Application in SERS Tuning. Langmuir, 2011, 27, 3381-3390.	3.5	81
336	Tubular Nanostructures of Cr2Te4O11and Mn2TeO6through Room-Temperature Chemical Transformations of Tellurium Nanowires. Journal of Physical Chemistry C, 2011, 115, 16524-16536.	3.1	6
337	Direct analysis of camptothecin from Nothapodytes nimmoniana by desorption electrospray ionization mass spectrometry (DESI-MS). Analyst, The, 2011, 136, 3066.	3.5	41
338	Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology, 2011, 22, 165701.	2.6	85
339	Understanding the Evolution of Luminescent Gold Quantum Clusters in Protein Templates. ACS Nano, 2011, 5, 8816-8827.	14.6	222
340	Thermal conductivity enhancement of nanofluids containing graphene nanosheets. Journal of Applied Physics, 2011, 110, .	2.5	169
341	Transparent, Luminescent, Antibacterial and Patternable Film Forming Composites of Graphene Oxide/Reduced Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2643-2654.	8.0	113
342	A fifteen atom silver cluster confined in bovine serum albumin. Journal of Materials Chemistry, 2011, 21, 11205.	6.7	156

#	Article	IF	Citations
343	Copper Quantum Clusters in Protein Matrix: Potential Sensor of Pb ²⁺ Ion. Analytical Chemistry, 2011, 83, 9676-9680.	6.5	311
344	Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Reviews, 2011, 2, 5883.	3.7	373
345	Size Evolution of Luminescent Lactoferrin Protected Gold Clusters. Journal of Biomedical Nanotechnology, 2011, 7, 70-71.	1.1	4
346	Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification. Journal of Hazardous Materials, 2011, 186, 921-931.	12.4	477
347	Supported quantum clusters of silver as enhanced catalysts for reduction. Nanoscale Research Letters, 2011, 6, 123.	5.7	74
348	Au ₂₅ @SiO ₂ : Quantum Clusters of Gold Embedded in Silica. Small, 2011, 7, 204-208.	10.0	60
349	A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. Journal of Hazardous Materials, 2011, 189, 450-457.	12.4	257
350	Ag₇ AND Ag₈ QUANTUM CLUSTERS SUPPORTED ON ALUMINA: NEW CATALYSTS FOR ORGANIC REACTIONS. International Journal of Nanoscience, 2011, 10, 839-843.	0.7	7
351	Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology, 2010, 21, 055103.	2.6	291
352	Molecular precursor-mediated tuning of gold mesostructures: Synthesis and SERRS studies. Journal of Crystal Growth, 2010, 312, 587-594.	1.5	8
353	A novel cellulose–manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(II) from water. Journal of Hazardous Materials, 2010, 181, 986-995.	12.4	143
354	Investigation of the role of NaBH4 in the chemical synthesis of gold nanorods. Journal of Nanoparticle Research, 2010, 12, 1777-1786.	1.9	54
355	High yield combustion synthesis of nanomagnesia and its application for fluoride removal. Science of the Total Environment, 2010, 408, 2273-2282.	8.0	116
356	Luminescent Quantum Clusters of Gold in Bulk by Albuminâ€Induced Core Etching of Nanoparticles: Metal Ion Sensing, Metalâ€Enhanced Luminescence, and Biolabeling. Chemistry - A European Journal, 2010, 16, 10103-10112.	3.3	246
357	Luminescent Ag ₇ and Ag ₈ Clusters by Interfacial Synthesis. Angewandte Chemie - International Edition, 2010, 49, 3925-3929.	13.8	266
358	Manganese dioxide nanowhiskers: A potential adsorbent for the removal of Hg(II) from water. Chemical Engineering Journal, 2010, 160, 432-439.	12.7	72
359	Optical limiting properties of Te and Ag2Te nanowires. Chemical Physics Letters, 2010, 485, 326-330.	2.6	76
360	Luminescent Quantum Clusters of Gold as Bio-Labels. Springer Series on Fluorescence, 2010, , 333-353.	0.8	23

#	Article	IF	Citations
361	Interaction of small gold clusters with carbon nanotube bundles: formation of gold atomic chains. Journal of Physics Condensed Matter, 2010, 22, 125301.	1.8	3
362	Chain Melting In Alkanethiol Protected Nano-Metal Clusters And Layered Thiolates. , 2010, , .		1
363	Bimetallic Mesoflowers: Region-Specific Overgrowth and Substrate Dependent Surface-Enhanced Raman Scattering at Single Particle Level. Langmuir, 2010, 26, 8901-8907.	3.5	23
364	Enhancement in the efficiency of polymerase chain reaction by TiO ₂ nanoparticles: crucial role of enhanced thermal conductivity. Nanotechnology, 2010, 21, 255704.	2.6	59
365	Pt3Te4Nanoparticles from Tellurium Nanowires. Langmuir, 2010, 26, 19136-19141.	3.5	25
366	Bimetallic Flowers, Beads, and Buds: Synthesis, Characterization, and Raman Imaging of Unique Mesostructures. Langmuir, 2010, 26, 456-465.	3.5	14
367	Uptake of Toxic Metal Ions from Water by Naked and Monolayer Protected Silver Nanoparticles: An X-ray Photoelectron Spectroscopic Investigation. Journal of Physical Chemistry C, 2010, 114, 8328-8336.	3.1	96
368	Ag ₉ Quantum Cluster through a Solid-State Route. Journal of the American Chemical Society, 2010, 132, 16304-16307.	13.7	258
369	Magnetic Mesoflowers: Synthesis, Assembly, and Magnetic Properties. Journal of Physical Chemistry C, 2010, 114, 16051-16059.	3.1	15
370	Lanthanum Telluride Nanowires: Formation, Doping, and Raman Studies. Journal of Physical Chemistry C, 2010, 114, 5871-5878.	3.1	36
371	Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale, 2010, 2, 2769.	5.6	252
372	Closed-Cage Tungsten Oxide Clusters in the Gas Phase. Journal of Physical Chemistry A, 2010, 114, 5445-5452.	2.5	17
373	Electric field enhancement and concomitant Raman spectral effects at the edges of a nanometre-thin gold mesotriangle. Journal of Materials Chemistry, 2010, 20, 2108.	6.7	38
374	PHOTOLUMINESCENCE AND TEMPERATURE-DEPENDENT EMISSION STUDIES OF Au ₂₅ CLUSTERS IN THE SOLID STATE. International Journal of Nanoscience, 2009, 08, 223-226.	0.7	17
375	Reply to "Comments on Electricâ€Fieldâ€Assisted Growth of Highly Uniform and Oriented Gold Nanotriangles on Conducting Glass Substrates― Advanced Materials, 2009, 21, 1320-1321.	21.0	3
376	Bright, NIRâ€Emitting Au ₂₃ from Au ₂₅ : Characterization and Applications Including Biolabeling. Chemistry - A European Journal, 2009, 15, 10110-10120.	3.3	250
377	Aqueous to Organic Phase Transfer of Au25 Clusters. Journal of Cluster Science, 2009, 20, 365-373.	3.3	23
378	Fluorescent superlattices of gold nanoparticles: A new class of functional materials. Nano Research, 2009, 2, 220-234.	10.4	28

#	Article	IF	Citations
379	Mesoflowers: A new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Research, 2009, 2, 306-320.	10.4	82
380	Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bulletin, 2009, 42, 144-152.	2.7	122
381	Noble metal nanoparticles for water purification: A critical review. Thin Solid Films, 2009, 517, 6441-6478.	1.8	684
382	Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds. Journal of Crystal Growth, 2009, 311, 3889-3897.	1.5	62
383	As(III) removal from drinking water using manganese oxide-coated-alumina: Performance evaluation and mechanistic details of surface binding. Chemical Engineering Journal, 2009, 153, 101-107.	12.7	132
384	Probing the Initial Stages of Molecular Organization of Oligo(<i>p</i> pi>â€phenylenevinylene) Assemblies with Monolayer Protected Gold Nanoparticles. Chemistry - an Asian Journal, 2009, 4, 840-848.	3.3	40
385	Low Energy Ion Scattering Investigations of n-Butanolâ^'Ice System in the Temperature Range of 110â^'150 K. Journal of Physical Chemistry C, 2009, 113, 14258-14263.	3.1	8
386	Tellurium Nanowire-Induced Room Temperature Conversion of Graphite Oxide to Leaf-like Graphenic Structures. Journal of Physical Chemistry C, 2009, 113, 1727-1737.	3.1	76
387	Enhanced visual detection of pesticides using gold nanoparticles. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 697-705.	1.5	65
388	Room-Temperature Chemical Synthesis of Silver Telluride Nanowires. Journal of Physical Chemistry C, 2009, 113, 13539-13544.	3.1	84
389	Organic-Soluble Antimicrobial Silver Nanoparticleâ^'Polymer Composites in Gram Scale by One-Pot Synthesis. ACS Applied Materials & Synthesis. ACS Applied Ma	8.0	29
390	Gold Nanoparticle Superlattices: Novel Surface Enhanced Raman Scattering Active Substrates. Chemistry of Materials, 2009, 21, 3773-3781.	6.7	30
391	Detection and Extraction of Pesticides from Drinking Water Using Nanotechnologies., 2009, , 191-212.		4
392	Conducting Nanocrystal Patterns Using a Silver Organic Complex Blended with Polystyrene as e-Beam Resist. Journal of Physical Chemistry C, 2009, 113, 7038-7043.	3.1	9
393	Bending and Shell Formation of Tellurium Nanowires Induced by Thiols. Chemistry of Materials, 2009, 21, 4527-4540.	6.7	22
394	Functionalized Au ₂₂ Clusters: Synthesis, Characterization, and Patterning. ACS Applied Materials & Distribution (1999). 1, 2199-2210.	8.0	81
395	Size tuning of Au nanoparticles formed by electron beam irradiation of Au25 quantum clusters anchored within and outside of dipeptide nanotubes. Journal of Materials Chemistry, 2009, 19, 8456.	6.7	55
396	Interfacial synthesis of luminescent 7 kDa silver clusters. Journal of Materials Chemistry, 2009, 19, 4335.	6.7	56

#	Article	IF	CITATIONS
397	CHEMICAL INTERACTIONS AT NOBLE METAL NANOPARTICLE SURFACES â€" CATALYSIS, SENSORS AND DEVICES. , 2009, , 95-116.		O
398	Electric Field Assisted Growth of Highly Surface Enhanced Raman Active Gold Nanotriangles. Journal of Nanoscience and Nanotechnology, 2009, 9, 5283-5287.	0.9	4
399	Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Research, 2008, 1, 333-340.	10.4	169
400	Reactivity and resizing of gold nanorods in presence of Cu2+. Bulletin of Materials Science, 2008, 31, 219-224.	1.7	9
401	Growth of anisotropic gold nanostructures on conducting glass surfaces. Journal of Chemical Sciences, 2008, 120, 79-85.	1.5	8
402	Removal of phase transfer agent leads to restricted dynamics of alkyl chains in monolayer protected clusters. Journal of Chemical Sciences, 2008, 120, 537-546.	1.5	1
403	Electricâ€Fieldâ€Assisted Growth of Highly Uniform and Oriented Gold Nanotriangles on Conducting Glass Substrates. Advanced Materials, 2008, 20, 980-983.	21.0	55
404	Fluorescent Gold Nanoparticle Superlattices. Advanced Materials, 2008, 20, 4719-4723.	21.0	40
405	Quantum Clusters of Gold Exhibiting FRET. Journal of Physical Chemistry C, 2008, 112, 14324-14330.	3.1	127
406	Wires, Plates, Flowers, Needles, and Coreâ [^] Shells:  Diverse Nanostructures of Gold Using Polyaniline Templates. Langmuir, 2008, 24, 4607-4614.	3.5	67
407	Structural Reorganization on Amorphous Ice Films below 120 K Revealed by Near-Thermal ($\hat{a}^{1}/41 \text{ eV}$) Ion Scattering. Journal of Physical Chemistry C, 2008, 112, 5129-5135.	3.1	15
408	Ligand Exchange of Au ₂₅ SG ₁₈ Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence. Journal of Physical Chemistry C, 2008, 112, 12168-12176.	3.1	307
409	Interaction of Carboxylic Acids and Water Ice Probed by Argon Ion Induced Chemical Sputtering. Journal of Physical Chemistry C, 2008, 112, 1604-1611.	3.1	10
410	One-, Two-, and Three-Dimensional Superstructures of Gold Nanorods Induced by Dimercaptosuccinic Acid. Langmuir, 2008, 24, 4589-4599.	3.5	76
411	Visible Fluorescence Induced by the Metal Semiconductor Transition in Composites of Carbon Nanotubes with Noble Metal Nanoparticles. Physical Review Letters, 2007, 99, 167404.	7.8	34
412	Evolution of the alkyl-chain dynamics in monolayer-protected gold clusters. Physical Review B, 2007, 75, .	3.2	22
413	Extraction of Chlorpyrifos and Malathion from Water by Metal Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 1871-1877.	0.9	66
414	CHEMICAL INTERACTIONS AT NOBLE METAL NANOPARTICLE SURFACES â€" CATALYSIS, SENSORS AND DEVICES. Cosmos, 2007, 03, 103-124.	0.4	17

#	Article	IF	Citations
415	Dynamics of alkyl chains in monolayer protected metal clusters and their superlattices. Journal of Physics: Conference Series, 2007, 92, 012161.	0.4	1
416	Gold Nanorods Grown on Microgels Leading to Hexagonal Nanostructures. Langmuir, 2007, 23, 8667-8669.	3.5	27
417	Probing Difference in Diffusivity of Chloromethanes through Water Ice in the Temperature Range of 110â° 150 K. Journal of Physical Chemistry C, 2007, 111, 8557-8565.	3.1	21
418	Transverse Electrokinetic Effect:  Experiments and Theory. Journal of Physical Chemistry C, 2007, 111, 19103-19110.	3.1	6
419	Hemoprotein Bioconjugates of Gold and Silver Nanoparticles and Gold Nanorods:Â Structureâ°Function Correlations. Langmuir, 2007, 23, 1320-1325.	3.5	67
420	Body- or Tip-Controlled Reactivity of Gold Nanorods and Their Conversion to Particles through Other Anisotropic Structures. Langmuir, 2007, 23, 9463-9471.	3.5	85
421	Reactivity of Au25 clusters with Au3+. Chemical Physics Letters, 2007, 449, 186-190.	2.6	59
422	Closed-cage clusters in the gaseous and condensed phases derived from sonochemically synthesized MoS ₂ nanoflakes. Journal of the American Society for Mass Spectrometry, 2007, 18, 2191-2197.	2.8	12
423	Investigations of the Antibacterial Properties of Ciprofloxacin@SiO2. Langmuir, 2006, 22, 10125-10129.	3.5	80
424	Polymerization of benzylthiocyanate on silver nanoparticles and the formation of polymer coated nanoparticles. Journal of Materials Chemistry, 2006, 16, 837-841.	6.7	17
425	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs= http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	2.6	5
426	Novel ZnO nanostructures over gold and silver nanoparticle assemblies. Chemical Physics Letters, 2006, 423, 240-246.	2.6	40
427	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.6	0
428	Aniline incorporated silica nanobubbles. Journal of Chemical Sciences, 2006, 118, 375-384.	1.5	6
429	AuxAgy@ZrO2 core–shell nanoparticles: synthesis, characterization, reactivity and optical limiting. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 117, 173-182.	3.5	32
430	Structural transformation in formic acid on ultra cold ice surfaces. Chemical Physics Letters, 2005, 402, 116-120.	2.6	27
431	Observation of a fifth order optical nonlinearity in 29kDa Au@alkanethiol clusters excited in the visible. Chemical Physics Letters, 2005, 403, 308-313.	2.6	30
432	Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 2005, 90, 59-63.	3.3	813

#	Article	IF	Citations
433	A micro-convection model for thermal conductivity of nanofluids. Pramana - Journal of Physics, 2005, 65, 863-869.	1.8	258
434	Nanoparticles-chemistry, new synthetic approaches, gas phase clustering and novel applications. Pramana - Journal of Physics, 2005, 65, 631-640.	1.8	6
435	On the formation of protected gold nanoparticles from AuCl 4 â^' by the reduction using aromatic amines. Journal of Nanoparticle Research, 2005, 7, 209-217.	1.9	99
436	DasetÂal.Reply:. Physical Review Letters, 2005, 95, .	7.8	3
437	Flow-Induced Transverse Electrical Potential across an Assembly of Gold Nanoparticles. Physical Review Letters, 2005, 95, 164501.	7.8	18
438	DasetÂal.Reply:. Physical Review Letters, 2005, 95, .	7.8	6
439	CAPPED METAL CLUSTERS IN THE GAS PHASE. International Journal of Nanoscience, 2005, 04, 935-944.	0.7	1
440	Interaction of Azide Ion with Hemin and CytochromecImmobilized on Au and Ag Nanoparticles. Langmuir, 2005, 21, 11896-11902.	3.5	48
441	Novel Cage Clusters of MoS2in the Gas Phase. Journal of Physical Chemistry A, 2005, 109, 7339-7342.	2.5	28
442	Growth of Gold Nanoparticles in Human Cells. Langmuir, 2005, 21, 11562-11567.	3.5	158
443	Concentration of CO2 over Melting Ice Oscillates. Physical Review Letters, 2004, 93, 048304.	7.8	5
444	Mobility of haloforms on ice surfaces. Chemical Physics Letters, 2004, 385, 244-248.	2.6	20
445	Gas phase aggregates of protected clusters. Chemical Physics Letters, 2004, 390, 181-185. <mml:math altimg="si17.gif" display="inline" overflow="scroll" td="" <=""><td>2.6</td><td>13</td></mml:math>	2.6	13
446	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.6	7
447	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x Carbon onions within silica nanoshells. Carbon, 2004, 42, 2352-2356.	10.3	13
448	An investigation of the structure of stearate monolayers on Au@ZrO2and Ag@ZrO2core–shell nanoparticles. Journal of Materials Chemistry, 2004, 14, 857-862.	6.7	26
449	Dynamics of Alkyl Chains in Monolayer-Protected Au and Ag Clusters and Silver Thiolates:Â A Comprehensive Quasielastic Neutron Scattering Investigation. Journal of Physical Chemistry B, 2004, 108, 7012-7020.	2.6	48
450	Porosity of core–shell nanoparticles. Journal of Materials Chemistry, 2004, 14, 2661-2666.	6.7	59

#	Article	IF	CITATIONS
451	Model for Heat Conduction in Nanofluids. Physical Review Letters, 2004, 93, 144301.	7.8	453
452	Ciprofloxacin-Protected Gold Nanoparticles. Langmuir, 2004, 20, 1909-1914.	3.5	205
453	Stabilization of monolayers by metal nanoparticles manifested in oscillations of interfacial potentials. Materials Science and Engineering C, 2004, 24, 535-539.	7.3	4
454	Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain. Chemical Physics Letters, 2003, 380, 223-229.	2.6	66
455	Solvothermal synthesis of silver nanoparticles from thiolates. Journal of Colloid and Interface Science, 2003, 268, 81-84.	9.4	78
456	Ciprofloxacin@SiO2: Fluorescent nanobubbles. Journal of Chemical Sciences, 2003, 115, 703-709.	1.5	7
457	Evolution of dynamical motions in monolayer protected metal-clusters. Chemical Physics, 2003, 292, 223-227.	1.9	4
458	Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Applied Physics Letters, 2003, 83, 2931-2933.	3.3	684
459	Detection and extraction of endosulfan by metal nanoparticles. Journal of Environmental Monitoring, 2003, 5, 363-365.	2.1	55
460	Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2Coreâ^'Shell Nanoparticles:Â One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties. Langmuir, 2003, 19, 3439-3445.	3.5	267
461	ZrO2 bubbles from core–shell nanoparticlesElectronic Supplementary Information (ESI) available: Time dependent UV-visible spectra of the reaction between Au@ZrO2 and CCl4. See http://www.rsc.org/suppdata/jm/b2/b210734a/. Journal of Materials Chemistry, 2003, 13, 297-300.	6.7	48
462	Absence of the rotator phase and evolution of dynamical motions in cluster monolayers. Journal of Chemical Physics, 2003, 118, 4614-4619.	3.0	16
463	Current understanding of the structure, phase transitions and dynamics of self-assembled monolayers on two- and three-dimensional surfaces. International Reviews in Physical Chemistry, 2003, 22, 221-262.	2.3	69
464	Alkyl Chain Dynamics in Monolayer-Protected Clusters (MPCs):Â A Quasielastic Neutron-Scattering Investigation. Journal of Physical Chemistry B, 2002, 106, 3960-3967.	2.6	27
465	Zirconia covered silver clusters through functionalized monolayersElectronic supplementary information (ESI) available: XPS, IR data of the monolayer protected cluster and the nanocomposite. See http://www.rsc.org/suppdata/jm/b2/b203081k/. Journal of Materials Chemistry, 2002, 12, 2421-2425.	6.7	17
466	Structure and dynamics of monolayers on planar and cluster surfaces. Pure and Applied Chemistry, 2002, 74, 1593-1607.	1.9	40
467	Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted byLactobacillusStrains. Crystal Growth and Design, 2002, 2, 293-298.	3.0	684
468	An investigation of the structure and properties of layered copper thiolates. Journal of Materials Chemistry, 2001, 11, 1294-1299.	6.7	75

#	Article	IF	CITATIONS
469	M4C9 +(M = Ti, V): New gas phase clusters. Journal of Chemical Sciences, 2001, 113, 681-688.	1.5	2
470	Unique Chemistry at Ice Surfaces: Incomplete Proton Transfer in the H3O+-NH3 System. Angewandte Chemie - International Edition, 2001, 40, 1497-1500.	13.8	36
471	C120On from C60Br24. Chemical Physics Letters, 2001, 333, 515-521.	2.6	7
472	Oxidation of alkanethiol monolayers on gold cluster surfaces. Chemical Physics Letters, 2001, 338, 33-36.	2.6	26
473	Radical-induced core destruction of monolayer-protected metal clusters. Chemical Physics Letters, 2001, 342, 272-276.	2.6	5
474	Reactive ion scattering from pure and mixed HCl, NH3 and D2O surfaces. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 193-199.	1.4	13
475	Surface Chemical Studies on Pyrite in the Presence of Polysaccharide-Based Flotation Depressants. Journal of Colloid and Interface Science, 2000, 229, 82-91.	9.4	103
476	A Versatile and Simple Method for the Preparation of Substrates for Surface-Enhanced Infrared Spectroscopy of Monolayers. Journal of Molecular Spectroscopy, 2000, 202, 303-305.	1.2	1
477	Surface resistance investigations of the exchange of 3D monolayers with molecules self-assembled on planar gold surfaces. Chemical Physics Letters, 2000, 327, 299-304.	2.6	6
478	Distinct liquid phase in metal-cluster superlattice solids. Physical Review B, 2000, 62, R739-R742.	3.2	25
479	Ionic dissociation of NaCl on frozen water. Journal of Chemical Physics, 2000, 113, 9373-9376.	3.0	24
480	Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Physical Review B, 2000, 62, 13160-13166.	3.2	282
481	2â€Mercaptobenzothiazole protected Au and Ag clusters. Journal of Materials Chemistry, 2000, 10, 981-986.	6.7	26
482	Metal Ion Reactivity with 1,4-Benzenedimethanethiol Monolayers on Gold. Langmuir, 2000, 16, 7673-7678.	3.5	23
483	Melting of monolayer protected cluster superlattices. Journal of Chemical Physics, 2000, 113, 9794-9803.	3.0	50
484	Monolayer-Protected Cluster Superlattices:Â Structural, Spectroscopic, Calorimetric, and Conductivity Studies. Chemistry of Materials, 2000, 12, 104-113.	6.7	71
485	A Method To Study the Phase Transition and Desorption of Self-Assembled Monolayers on Planar Gold Surfaces. Analytical Chemistry, 2000, 72, 5852-5856.	6.5	20
486	Activation of Dioxygen by Halocarbon Ions. Journal of Physical Chemistry A, 2000, 104, 6804-6808.	2.5	6

#	Article	IF	CITATIONS
487	Crystalline Solids of Alloy Clusters. Chemistry of Materials, 2000, 12, 1755-1761.	6.7	33
488	Formation of a nickel hydroxide monolayer on Au through a self-assembled monolayer of $5,5\hat{a}\in^2$ -dithiobis(2-nitrobenzoic acid): voltammetric, SERS and XPS investigations of the modified electrodes. Journal of Electroanalytical Chemistry, 1999, 468, 170-179.	3.8	20
489	Self assembled monolayers. Resonance, 1999, 4, 53-62.	0.3	1
490	A Combined Surface-Enhanced Raman–X-Ray Photoelectron Spectroscopic Study of 2-mercaptobenzothiazole Monolayers on Polycrystalline Au and Ag Films. Journal of Colloid and Interface Science, 1999, 209, 154-161.	9.4	74
491	Self-assembled Monolayers of Two Aromatic Disulfides and a Diselenide on Polycrystalline Silver Films: An Investigation by SERS and XPS. Journal of Colloid and Interface Science, 1999, 212, 553-561.	9.4	23
492	3D Monolayers of 1,4-Benzenedimethanethiol on Au and Ag Clusters: Distinct Difference in Adsorption Geometry with the Corresponding 2D Monolayers. Journal of Colloid and Interface Science, 1999, 216, 134-142.	9.4	17
493	Charge-Transfer Complexation of C60 with Diphenyltetrathiafulvalene (DPTTF) Capped Gold Clusters. Journal of Colloid and Interface Science, 1999, 217, 395-402.	9.4	4
494	Ion/Surface Reactions at Monolayers in Solution: A Combined Surface Enhanced Raman–X-Ray Photoelectron Spectroscopic Investigation of the Chemical Modification of a 2-Mercaptobenzothiazole Monolayer on Polycrystalline Au Films. Journal of Colloid and Interface Science, 1999, 218, 176-183.	9.4	8
495	C-F and C-C bond activation by transition metals in low energy atomic ion/surface collisions. , 1999, 13, 172-178.		7
496	Covalent chemical modification of self- assembled fluorocarbon monolayers by low- energy CH2Br2+ \hat{A} -ions: a combined ion/surface scattering and X-ray photoelectron spectroscopic investigation., 1999, 13, 986-993.		21
497	Trapping of molecules in alkanethiol self-assembled monolayer matrices. Molecular Physics, 1999, 96, 367-370.	1.7	3
498	Spectroscopic Investigations of $M(CO)5-C60$ (M = W, MO) Complexes: Precursors for Metal Fullerides. Fullerenes, Nanotubes, and Carbon Nanostructures, 1999, 7, 123-146.	0.6	1
499	Adsorbate Geometry Distinction in Arenethiols by Ion/Surface Reactive Collisions. Journal of Physical Chemistry B, 1999, 103, 5304-5310.	2.6	21
500	Self-Assembled Monolayers of Small Aromatic Disulfide and Diselenide Molecules on Polycrystalline Gold Films:Â A Comparative Study of the Geometrical Constraint Using Temperature-Dependent Surface-Enhanced Raman Spectroscopy, X-ray Photoelectron Spectroscopy, and Electrochemistry. Langmuir, 1999, 15, 5314-5322.	3.5	115
501	Reactive Ion Scattering from Surfaces Bearing Isomeric Chlorinated Adsorbates. Analytical Chemistry, 1999, 71, 3311-3317.	6.5	19
502	C–F and C–C bond activation by transition metals in low energy atomic ion/surface collisions. Rapid Communications in Mass Spectrometry, 1999, 13, 172-178.	1.5	1
503	Characteristics of alkanethiol self assembled monolayers prepared on sputtered gold films: a surface enhanced Raman spectroscopic investigation. Vacuum, 1998, 49, 279-284.	3.5	36
504	Simple method for the preparation of surface-enhanced Raman-active gold films. Journal of Raman Spectroscopy, 1998, 29, 359-363.	2.5	9

#	Article	IF	CITATIONS
505	Characterisation of alkanethiol (CnH2n + 1SH, n = 3 , 4, 6, 8 ,10,12 and 18) self assembled monolayers by X-ray photoelectron spectroscopy. Vacuum, 1998 , 49 , 63 - 66 .	3.5	27
506	Gas-phase C-F bond cleavage in perfluorohexane using W-, Si-, P-, Br-, and I-containing ions: Comparisons with reactions at fluorocarbon surfaces. Journal of the American Society for Mass Spectrometry, 1998, 9, 1158-1167.	2.8	14
507	Self-assembled Monolayers of 1,4-Benzenedimethanethiol on Polycrystalline Silver and Gold Films:Â An Investigation of Structure, Stability, Dynamics, and Reactivity. Langmuir, 1998, 14, 5446-5456.	3.5	114
508	Investigation of the depth of preferential surface ordering in liquids: A photoelectron spectroscopic investigation of liquid mixtures. Journal of Chemical Physics, 1997, 106, 1231-1233.	3.0	3
509	Vibrational spectroscopic studies of FeClMoO4, Na2MoO4 and Na2MoO4·2H2O/D2O. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1997, 53, 867-876.	3.9	30
510	Infrared spectroscopic study of the structural transitions of C60Br24. Journal of Molecular Structure, 1997, 435, 11-15.	3.6	5
511	Thermal decomposition of C60Br24 and C60Br8: Absence of sequential elimination. Journal of Chemical Sciences, 1997, 109, 221-228.	1.5	3
512	Low-energy Collisions of Methane Ions at a Fluoroalkyl Monolayer Surface. Journal of Mass Spectrometry, 1996, 31, 791-801.	1.6	16
513	Chemical transformations of self-assembled monolayers by low energy reactive ion beam bombardment. International Journal of Mass Spectrometry and Ion Processes, 1996, 155, 69-78.	1.8	7
514	ESR Studies on C60.OXand C60.HMTTEF. Fullerenes, Nanotubes, and Carbon Nanostructures, 1996, 4, 583-598.	0.6	3
515	Surface Structure of A Liquid Perfluoropolyether Examined by Reactive Ion/Surface Scattering. Materials Research Society Symposia Proceedings, 1995, 380, 93.	0.1	5
516	Chemical constitution of a perfluoropolyether liquid surface. A photoelectron spectroscopic study. Chemical Physics Letters, 1995, 243, 125-128.	2.6	9
517	Chemical modification of fluorinated self-assembled monolayer surfaces by low energy reactive ion bombardment. Journal of the American Society for Mass Spectrometry, 1995, 6, 187-194.	2.8	42
518	HMTTEF.C60-A 2-D close-packed layered compound of C60. Materials Research Bulletin, 1995, 30, 1547-1552.	5.2	0
519	Preferential molecular ordering at the surface of a liquid perfluoropolyether revealed by xâ€ray photoelectron spectroscopy. Journal of Chemical Physics, 1995, 103, 485-486.	3.0	14
520	Concerted Hydrogen Rearrangement in Nickelocenium Cation and the Formation of NiH2.bul.+. The Journal of Physical Chemistry, 1995, 99, 2941-2945.	2.9	9
521	Low-Energy Collisions of Group IIIA, IVA, VA, VIA, and VIIA Ions with fluoroalkyl SAM Surfaces: Reactions, Chemical Sputtering, and Mechanistic Implications. The Journal of Physical Chemistry, 1994, 98, 9301-9311.	2.9	35
522	C60 inflation: production of C62, C64, …. International Journal of Mass Spectrometry and Ion Processes, 1994, 135, 243-247.	1.8	9

#	Article	IF	Citations
523	Reactions of Metal Ions at Fluorinated SAM (Self-Assembled Monolayer) Surfaces: Formation of MFn+ $(M = Ti, Cr, Fe, Mo, and W; n = 1-5)$. Journal of the American Chemical Society, 1994, 116, 8658-8665.	13.7	53
524	Reactions of ions with organic surfaces. Accounts of Chemical Research, 1994, 27, 316-323.	15.6	185
525	High resolution photoelectron spectroscopy of CH2F2, CH2Cl2 and CF2Cl2 using supersonic molecular beams. Journal of Electron Spectroscopy and Related Phenomena, 1993, 66, 125-138.	1.7	34
526	Surface-Induced dissociation from a liquid surface. Journal of the American Society for Mass Spectrometry, 1993, 4, 769-773.	2.8	55
527	Reactions of low-energy ions with ferrocene self-assembled monolayer surfaces. Rapid Communications in Mass Spectrometry, 1993, 7, 711-713.	1.5	10
528	Photoelectron spectroscopy of rare gas dimers revisited: Vibrationally resolved photoelectron spectrum of argon dimer. Journal of Chemical Physics, 1993, 98, 5269-5275.	3.0	35
529	A stable fullerene charge-transfer complex in the solid state: HMTTEF–C60. Journal of the Chemical Society Chemical Communications, 1992, , 1747-1748.	2.0	38
530	A comparative study of the interaction of nickel clusters with buckminsterfullerene, C60, and graphite. Surface Science, 1992, 262, L87-L90.	1.9	12
531	A novel iron fullerene (FeC60) adduct in the solid state. Journal of the American Chemical Society, 1992, 114, 2272-2273.	13.7	76
532	Pressure-induced shift of the photoluminescence band in single crystals of buckminster fullerene C60 and its implications for superconductivity in doped samples. Solid State Communications, 1992, 81, 89-92.	1.9	32
533	Addition of amines and halogens to fullerenes C60 and C70. Tetrahedron Letters, 1992, 33, 2069-2070.	1.4	57
534	Ultraviolet photoelectron spectroscopy of the hydrogen bonded heterodimer H2Sâ<-HCl. Spectrochimica Acta Part A: Molecular Spectroscopy, 1992, 48, 1795-1799.	0.1	1
535	Electron states of the HCl dimer. Journal of Chemical Physics, 1991, 95, 7389-7391.	3.0	7
536	Studies of molecular interactions in the vapour phase by ultraviolet photoelectron spectroscopy: electronic structures of donor–acceptor complexes including hydrogen bonded dimers and van der Waals molecules. Chemical Society Reviews, 1991, 20, 477-502.	38.1	16
537	Electron states of 1:1 addition compounds of AlCl3 and GaCl3 with electron donor molecules: a Hel photoelectron spectroscopic study. Journal of Molecular Structure, 1991, 247, 217-223.	3.6	2
538	Preparation of buckminsterfullerene, C60. Materials Research Bulletin, 1991, 26, 1101-1105.	5.2	8
539	An ultraviolet photoelectron spectroscopic study of the H2S dimer, a van der Waals molecule. Chemical Physics Letters, 1991, 185, 496-500.	2.6	4
540	An ultraviolet photoelectron spectroscopic study of the hydrogen bonded dimers of methanol, ethanol, and dimethylamine in the vapor phase. Journal of Molecular Spectroscopy, 1991, 150, 289-292.	1.2	8

#	Article	IF	CITATIONS
541	Interaction of nitrogen with fullerenes: nitrogen derivatives of C60 and C70. The Journal of Physical Chemistry, 1991, 95, 10564-10565.	2.9	150
542	Photoelectron spectrum of the Xeâ‹â‹â‹HCl van der Waals molecule. Journal of Chemical Physics, 1991, 94, 4680-4681.	3.0	9
543	Design and fabrication of an indigenous molecular beam ultraviolet photoelectron spectrometer. Journal of Chemical Sciences, 1991, 103, 591-597.	1.5	4
544	Buckminsterfullerene, C60: Improved synthesis, electron microscopy, electron states, anions and related aspects. Journal of Chemical Sciences, 1991, 103, 685-689.	1.5	3
545	Electronic transitions of hydrogen bonded complexes: an electron energy loss spectroscopic study. Journal of Molecular Structure, 1990, 224, 21-31.	3.6	4
546	Electronic structures of RN(PX2)2 (Rî—»CH3 or C6H5; Xî—»Cl, OCH3 or OC6H5) ligands: an ultraviolet photoelectron spectroscopic study. Journal of Electron Spectroscopy and Related Phenomena, 1990, 53, 119-127.	1.7	1
547	Electronic transitions of AlCl3, AlBr3, and FeCl3 in the vapor phase: An electron energy loss spectroscopic study. Journal of Molecular Spectroscopy, 1990, 139, 453-456.	1.2	2
548	Electron energy loss spectroscopic study of Cr(CO)6, Mo(CO)6 and W(CO)6 in the vapour phase. Journal of Chemical Sciences, 1990, 102, 1-5.	1.5	2
549	An ultraviolet photoelectron spectroscopic study of BF3–donor complexes. Journal of Chemical Physics, 1989, 90, 4704-4708.	3.0	20
550	Electronic structures of electron donor-acceptor complexes: results from ultraviolet photoelectron spectroscopy and molecular orbital calculations. Computational and Theoretical Chemistry, 1989, 200, 339-352.	1.5	19
551	A study of the electronic structures of nî—,v addition compounds of BH3 by a combined use of ups and eels. Journal of Molecular Structure, 1989, 194, 163-170.	3.6	8
552	Experimental electronic structures of sulfur dioxide complexes: an electron spectroscopic study. Journal of the American Chemical Society, 1989, 111, 5058-5063.	13.7	18
553	UPS-EELS investigation of the electronic structure of BF3·H2S. Chemical Physics Letters, 1988, 151, 499-502.	2.6	9
554	Electron energy loss spectroscopy (EELS) of H2O, H2S, H2Se and H2Te. Spectrochimica Acta Part A: Molecular Spectroscopy, 1988, 44, 883-887.	0.1	5