
## **Rita Abranches**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8700062/publications.pdf Version: 2024-02-01



RITA ARRANCHES

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optimal Nitrate Supplementation in Phaeodactylum tricornutum Culture Medium Increases Biomass and Fucoxanthin Production. Foods, 2022, 11, 568.                                                                                                  | 4.3 | 7         |
| 2  | Hairy root cultures of Cynara cardunculus L. as a valuable source of hydroxycinnamic acid compounds. Plant Cell, Tissue and Organ Culture, 2021, 147, 37-47.                                                                                     | 2.3 | 3         |
| 3  | Tobacco BY2 cells expressing recombinant cardosin B as an alternative for production of active milk clotting enzymes. Scientific Reports, 2021, 11, 14501.                                                                                       | 3.3 | 1         |
| 4  | Contributions of the international plant science community to the fight against infectious diseases in humans—part 2: Affordable drugs in edible plants for endemic and reâ€emerging diseases. Plant Biotechnology Journal, 2021, 19, 1921-1936. | 8.3 | 31        |
| 5  | Contributions of the international plant science community to the fight against human infectious<br>diseases – part 1: epidemic and pandemic diseases. Plant Biotechnology Journal, 2021, 19, 1901-1920.                                         | 8.3 | 44        |
| 6  | Toward alternative sources of milk coagulants for cheese manufacturing: establishment of hairy<br>roots culture and protease characterization from Cynara cardunculus L Plant Cell Reports, 2020, 39,<br>89-100.                                 | 5.6 | 11        |
| 7  | Synthesis and biological effects of small molecule enhancers for improved recombinant protein production in plant cell cultures. Bioorganic Chemistry, 2020, 94, 103452.                                                                         | 4.1 | 5         |
| 8  | Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution. Plants, 2020, 9, 1039.                                                                                                                                 | 3.5 | 43        |
| 9  | Plant Aspartic Proteases for Industrial Applications: Thistle Get Better. Plants, 2020, 9, 147.                                                                                                                                                  | 3.5 | 8         |
| 10 | Generation of transgenic cell suspension cultures of the model legume Medicago truncatula: a rapid<br>method for Agrobacterium mediated gene transfer. Plant Cell, Tissue and Organ Culture, 2019, 136,<br>445-450.                              | 2.3 | 5         |
| 11 | Low Protease Content in <i>Medicago truncatula</i> Cell Cultures Facilitates Recombinant Protein<br>Production. Biotechnology Journal, 2018, 13, e1800050.                                                                                       | 3.5 | 16        |
| 12 | Addition of a histone deacetylase inhibitor increases recombinant protein expression in Medicago truncatula cell cultures. Scientific Reports, 2017, 7, 16756.                                                                                   | 3.3 | 13        |
| 13 | Putting the Spotlight Back on Plant Suspension Cultures. Frontiers in Plant Science, 2016, 7, 297.                                                                                                                                               | 3.6 | 129       |
| 14 | Cytogenomic characterization of <i>Colletotrichum kahawae</i> , the causal agent of coffee berry disease, reveals diversity in minichromosome profiles and genome size expansion. Plant Pathology, 2016, 65, 968-977.                            | 2.4 | 30        |
| 15 | Cell Differentiation and Development in <i>Arabidopsis</i> Are Associated with Changes in Histone<br>Dynamics at the Single-Cell Level Â. Plant Cell, 2015, 26, 4821-4833.                                                                       | 6.6 | 66        |
| 16 | Plasticity of Chromatin Organization in the Plant Interphase Nucleus. , 2015, , 57-79.                                                                                                                                                           |     | 2         |
| 17 | Genome size analyses of Pucciniales reveal the largest fungal genomes. Frontiers in Plant Science, 2014, 5, 422.                                                                                                                                 | 3.6 | 86        |
| 18 | Production of human lipocalin-type prostaglandin D synthase in the model plant Medicago<br>truncatula. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 276-281.                                                                   | 2.1 | 6         |

**RITA ABRANCHES** 

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Assessment of Medicago Based Systems for the Production of Human Proteins: Microscopy Analysis of<br>the Subcellular Deposition Patterns of the Recombinant Product. Microscopy and Microanalysis, 2012,<br>18, 11-12. | 0.4 | 0         |
| 20 | Integrated approaches to studying Medicago truncatula genome structure and function and their applications in biotechnology. Molecular Breeding, 2012, 30, 1431-1442.                                                  | 2.1 | 1         |
| 21 | Expression of a recombinant human erythropoietin in suspension cell cultures of Arabidopsis,<br>tobacco and Medicago. Plant Cell, Tissue and Organ Culture, 2012, 110, 171-181.                                        | 2.3 | 29        |
| 22 | Cell-line-dependent sorting of recombinant phytase in cell cultures of Medicago truncatula.<br>Functional Plant Biology, 2009, 36, 431.                                                                                | 2.1 | 4         |
| 23 | Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta, 2008, 227, 649-658.                                                   | 3.2 | 20        |
| 24 | High levels of stable phytase accumulate in the culture medium of transgenic <i>Medicago truncatula</i> cell suspension cultures. Biotechnology Journal, 2008, 3, 916-923.                                             | 3.5 | 18        |
| 25 | Immunolocalization of Histone Modifications as a Tool to Visualize Chromatin Dynamics in Plants.<br>Microscopy and Microanalysis, 2008, 14, 130-133.                                                                   | 0.4 | 2         |
| 26 | Title is missing!. Microbial Cell Factories, 2006, 5, P92.                                                                                                                                                             | 4.0 | 1         |
| 27 | In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic<br>plant research. Plant Methods, 2006, 2, 18.                                                                      | 4.3 | 11        |
| 28 | The Quest to Understand the Basis and Mechanisms that Control Expression of Introduced Transgenes in Crop Plants. Plant Signaling and Behavior, 2006, 1, 185-195.                                                      | 2.4 | 61        |
| 29 | Matrix attachment regions and regulated transcription increase and stabilize transgene expression.<br>Plant Biotechnology Journal, 2005, 3, 535-543.                                                                   | 8.3 | 34        |
| 30 | Plants as bioreactors: A comparative study suggests that Medicago truncatula is a promising production system. Journal of Biotechnology, 2005, 120, 121-134.                                                           | 3.8 | 55        |
| 31 | Transgene integration, organization and interaction in plants. Plant Molecular Biology, 2003, 52, 247-258.                                                                                                             | 3.9 | 241       |
| 32 | The architecture of interphase chromosomes and gene positioning are altered by changes in DNA methylation and histone acetylation. Journal of Cell Science, 2002, 115, 4597-4605.                                      | 2.0 | 59        |
| 33 | The architecture of interphase chromosomes and nucleolar transcription sites in plants. Journal of Structural Biology, 2002, 140, 31-38.                                                                               | 2.8 | 34        |
| 34 | High-throughput transgene copy number estimation by competitive PCR. Plant Molecular Biology<br>Reporter, 2002, 20, 265-277.                                                                                           | 1.8 | 15        |
| 35 | The nucleus: a highly organized but dynamic structure. Journal of Microscopy, 2000, 198, 199-207.                                                                                                                      | 1.8 | 20        |
| 36 | Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant Journal, 2000, 24, 713-723.                                                                       | 5.7 | 5         |

**RITA ABRANCHES** 

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant Journal, 2000, 24, 713-723.                      | 5.7 | 66        |
| 38 | Transcription Sites Are Not Correlated with Chromosome Territories in Wheat Nuclei. Journal of Cell<br>Biology, 1998, 143, 5-12.                                      | 5.2 | 135       |
| 39 | Development-dependent inheritance of 5-azacytidine-induced epimutations in triticale: analysis of rDNA expression patterns. Chromosome Research, 1997, 5, 445-450.    | 2.2 | 46        |
| 40 | Increasing fucoxanthin production in Phaeodactylum tricornutum using genetic engineering and optimization of culture conditions. Frontiers in Marine Science, 0, 5, . | 2.5 | 6         |