Mikhail A Belkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8699862/publications.pdf

Version: 2024-02-01

210 papers

7,006 citations

66343 42 h-index 82 g-index

212 all docs

212 docs citations

212 times ranked 5822 citing authors

#	Article	IF	Citations
1	An All-Dielectric Polaritonic Metasurface with a Giant Nonlinear Optical Response. Nano Letters, 2022, 22, 896-903.	9.1	22
2	Mid-infrared microring resonators and optical waveguides on an InP platform. Applied Physics Letters, 2022, 120, .	3.3	15
3	Electrically tunable nonlinear polaritonic metasurface. Nature Photonics, 2022, 16, 72-78.	31.4	34
4	Strong Coupling in All-Dielectric Intersubband Polaritonic Metasurfaces. Nano Letters, 2021, 21, 367-374.	9.1	18
5	Control of Second-Harmonic Generation in Dielectric Polaritonic Metasurfaces Using χ(2) Polarity Switching., 2021,,.		1
6	Electrically tunable quarter waveplate based on intersubband polaritonic metasurfaces., 2021,,.		0
7	Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces. Optica, 2021. 8, 606. Defect Tolerance of Intersubband Transitions in Nonpolar <mml:math< td=""><td>9.3</td><td>26</td></mml:math<>	9.3	26
8	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mrow><mml:mi>Ga</mml:mi><mml:mi mathvariant="normal">N</mml:mi></mml:mrow> <mml:mo>/</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Al</mml:mi> <mml:mo>,</mml:mo> <mml:mi>Ga</mml:mi>	3.8 ETQq0 0 0	1 rgBT /Overlo
9	mathvariant="normal" > N / mml:mi > / m Overcoming Intensity Saturation in Nonlinear Multipleâ€Quantumâ€Well Metasurfaces for Highâ€Efficiency Frequency Upconversion. Advanced Materials, 2021, , 2106902.	21.0	1
10	Giant Nonlinear Circular Dichroism from Intersubband Polaritonic Metasurfaces. Nano Letters, 2020, 20, 8032-8039.	9.1	32
11	Structural and optical properties of nonpolar m- and a-plane GaN/AlGaN heterostructures for narrow-linewidth mid-infrared intersubband transitions. Applied Physics Letters, 2020, 116, 201103.	3.3	7
12	Spinâ€Controlled Nonlinear Harmonic Generations from Plasmonic Metasurfaces Coupled to Intersubband Transitions. Advanced Optical Materials, 2020, 8, 2000004.	7.3	15
13	All-Dielectric Intersubband Polaritonic Metasurface with Giant Second-Order Nonlinear Response. , 2020, , .		1
14	Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces. , 2020, , .		2
15	Intersubband Transitions in GaNZAl0.5Ga0.5N Quantum Wells on a-Plane and m-Plane GaN Substrates., 2020,,.		0
16	Intersubband Polaritonics in Dielectric Metasurfaces. , 2020, , .		0
17	Broadband and Efficient Second-Harmonic Generation from a Hybrid Dielectric Metasurface/Semiconductor Quantum-Well Structure. ACS Photonics, 2019, 6, 1458-1465.	6.6	26
18	Infrared Vibrational Spectroscopy of Functionalized Atomic Force Microscope Probes using Resonantly Enhanced Infrared Photoexpansion Nanospectroscopy. Small Methods, 2019, 3, 1900018.	8.6	4

#	Article	IF	Citations
19	Hybrid Dielectric Metasurfaces: From Strong Light-Matter Interaction to Extreme Nonlinearities. , 2019, , .		O
20	Purcell enhancement of the parametric down-conversion in two-dimensional nonlinear materials. APL Photonics, 2019, 4, 034403.	5.7	14
21	Homogeneous photonic integration of mid-infrared quantum cascade lasers with low-loss passive waveguides on an InP platform. Optica, 2019, 6, 1023.	9.3	28
22	A Hybrid Dielectric-Semiconductor Resonant Nanostructure for Broadband and Efficient Second-Harmonic Generation. , 2019, , .		0
23	Enhancement of the spontaneous emission in subwavelength quasi-two-dimensional waveguides and resonators. Physical Review A, 2018, 97, .	2.5	9
24	Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics, 2018, 7, 1795-1817.	6.0	67
25	Mid-infrared quantum cascade laser arrays with electrical switching of emission frequencies. AIP Advances, 2018, 8, .	1.3	4
26	Double-metal waveguide terahertz difference-frequency generation quantum cascade lasers with surface grating outcouplers. Applied Physics Letters, 2018, 113, 161102.	3.3	10
27	A Hybrid Dielectric-Semiconductor Metasurface for Efficient Second-Harmonic Generation. , 2018, , .		0
28	Differenceâ€Frequency Generation in Polaritonic Intersubband Nonlinear Metasurfaces. Advanced Optical Materials, 2018, 6, 1800681.	7.3	12
29	Quantum Confinement in Oxide Heterostructures: Room-Temperature Intersubband Absorption in SrTiO ₃ /LaAlO ₃ Multiple Quantum Wells. ACS Nano, 2018, 12, 7682-7689.	14.6	15
30	Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	12
31	Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160061.	3.4	18
32	Narrow-linewidth ultra-broadband terahertz sources based on difference-frequency generation in mid-infrared quantum cascade lasers. , 2017, , .		2
33	Terahertz difference frequency generation in quantum cascade lasers on silicon. , 2017, , .		0
34	Flat nonlinear optics: metasurfaces for efficient frequency mixing. , 2017, , .		0
35	Strain compensated superlattices on <i>m</i> -plane gallium nitride by ammonia molecular beam epitaxy. Journal of Applied Physics, 2017, 122, .	2.5	10
36	Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Science Advances, 2017, 3, e1603317.	10.3	33

#	Article	IF	CITATIONS
37	High-sensitivity infrared vibrational nanospectroscopy in water. Light: Science and Applications, 2017, 6, e17096-e17096.	16.6	67
38	Highly-efficient THz generation using nonlinear plasmonic metasurfaces. Journal of Optics (United) Tj ETQq0 0	0 rgBT_/Ove	erlock 10 Tf 5
39	Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region. Scientific Reports, 2017, 7, 7360.	3.3	26
40	Quantum cascade lasers transfer-printed on silicon-on-sapphire. Applied Physics Letters, 2017, 111, .	3.3	18
41	Guest Editorial Mini-Special Issue on International Quantum Cascade Lasers School and Workshop (IQCLSW 2016). IEEE Transactions on Terahertz Science and Technology, 2017, 7, 349-350.	3.1	0
42	Terahertz difference-frequency quantum cascade laser sources on silicon. Optica, 2017, 4, 38.	9.3	25
43	Low-Loss Ge-on-GaAs Platform for Mid-Infrared Photonics. , 2017, , .		3
44	Difference-Frequency Generation Quantum Cascade Laser Sources on Silicon., 2017,,.		O
45	1.9 THz Difference-Frequency Generation in Mid-Infrared Quantum Cascade Lasers with Grating Outcouplers. , 2017, , .		0
46	Mid-infrared quantum cascade lasers transfer-printed on silicon-on-sapphire., 2017,,.		0
47	Efficient THz Generation in Long-Wavelength Infrared Quantum Cascade Lasers. , 2017, , .		O
48	Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon. Optical Engineering, 2017, 57, 1.	1.0	0
49	Infrared Nanospectroscopy in Liquid. , 2016, , .		O
50	Spectroscopic study of terahertz difference-frequency nonlinear susceptibility in mid-infrared quantum cascade lasers. , 2016, , .		0
51	Flat nonlinear optics with ultrathin highly-nonlinear metasurfaces. , 2016, , .		1
52	Room-temperature THz sources based on intra-cavity difference-frequency mixing in mid-infrared quantum cascade lasers. , 2016, , .		0
53	Plasmonic Metasurfaces: Tunable Graphene Metasurfaces with Gradient Features by Self-Assembly-Based Moiré Nanosphere Lithography (Advanced Optical Materials 12/2016). Advanced Optical Materials, 2016, 4, 1904-1904.	7.3	0
54	Advanced control of nonlinear beams with Pancharatnam-Berry metasurfaces. Physical Review B, 2016, 94, .	3.2	27

#	Article	IF	CITATIONS
55	Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces. Nano Letters, 2016, 16, 3607-3615.	9.1	84
56	Tunable Graphene Metasurfaces with Gradient Features by Selfâ€Assemblyâ€Based Moiré Nanosphere Lithography. Advanced Optical Materials, 2016, 4, 2035-2043.	7.3	21
57	Ultrathin nonlinear metasurfaces. , 2016, , .		0
58	Gradient nonlinear metasurfaces for continuous phase control., 2016,,.		1
59	Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers. Scientific Reports, 2016, 6, 21169.	3.3	32
60	Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials. Nature Communications, 2016, 7, 12045.	12.8	155
61	Thermopile detector of light ellipticity. Nature Communications, 2016, 7, 12994.	12.8	12
62	Ultrathin nonlinear metasurfaces with continuous phase control at the nanoscale., 2016,,.		0
63	Ultrathin Secondâ€Harmonic Metasurfaces with Recordâ€High Nonlinear Optical Response. Advanced Optical Materials, 2016, 4, 664-670.	7.3	86
64	Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica, 2016, 3, 283.	9.3	89
65	Monolithic bipolar thermopile detector sensitive to light ellipticity. , 2016, , .		0
66	Nonlinear processes in multi-quantum-well plasmonic metasurfaces: Electromagnetic response, saturation effects, limits, and potentials. Physical Review B, 2015, 92, .	3.2	46
67	Gradient Nonlinear Pancharatnam-Berry Metasurfaces. Physical Review Letters, 2015, 115, 207403.	7.8	190
68	Formation of Quantum Phase Slip Pairs in Superconducting Nanowires. Physical Review X, 2015, 5, .	8.9	25
69	Nonlinear optics with quantum-engineered intersubband metamaterials. , 2015, , .		1
70	Recent Progress in Widely Tunable Single-Mode Room Temperature Terahertz Quantum Cascade Laser Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 134-143.	2.9	11
71	Strong non-linear non-reciprocity using leaky-waves on multi quantum well layers. , 2015, , .		0
72	Second and third-order giant non-linear processes in plasmonic metasurfaces. , 2015, , .		0

#	Article	IF	Citations
73	Flat nonlinear optics: Efficient frequency conversion in ultrathin nonlinear metasurfaces., 2015,,.		О
74	Giant nonlinear processes in plasmonic metasurfaces. , 2015, , .		1
75	Efficient terahertz-wave generation in mid-infrared quantum-cascade lasers with a common dual-upper-state active region. , $2015, , .$		0
76	Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays. Applied Physics Letters, 2015, 106, .	3.3	17
77	Rapidly Tunable Quantum Cascade Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-9.	2.9	18
78	Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region. Applied Physics Letters, 2015, 106, .	3.3	56
79	New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Physica Scripta, 2015, 90, 118002.	2.5	157
80	Active Epsilon-Near-Zero Infrared Metamaterials. , 2015, , .		0
81	High power MWIR quantum cascade lasers and their use in intra-cavity THz room temperature generation. Proceedings of SPIE, 2015, , .	0.8	0
82	Highly-nonlinear quantum-engineered polaritonic metasurfaces. Proceedings of SPIE, 2015, , .	0.8	0
83	Broadly-Tunable Room-Temperature Monolithic Terahertz Quantum Cascade Laser Sources. , 2015, , .		1
84	Ohmic Loss Produces Chiral Dichroism in Plasmonic Metasurfaces: First Experimental Demonstration. , $2015, \dots$		0
85	Background-Free Heterodyne Photoexpansion Infrared Nanospectroscopy. , 2015, , .		0
86	Giant nonlinear response of polaritonic metasurfaces coupled to intersubband transition. , 2015, , .		0
87	Two-Dimensional Pump Frequency Study of THz Generation in Mid-Infrared Quantum Cascade Lasers. , 2015, , .		0
88	Broadly tunable external cavity terahertz source from 1.2∼5.9 THz., 2014,,.		0
89	Metasurfaces: Ultrafast Electrically Tunable Polaritonic Metasurfaces (Advanced Optical Materials) Tj ETQq $1\ 1\ 0$	0.784314 r 7.3	gBT ₁ /Overlock
90	Monolithic tunable terahertz quantum cascade laser source based on difference frequency generation. , 2014, , .		0

#	Article	IF	Citations
91	Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photonics, 2014, 8, 307-312.	31.4	266
92	Experimental investigation of terahertz quantum cascade laser with variable barrier heights. Journal of Applied Physics, 2014, 115, 163103.	2.5	14
93	Ultrafast Electrically Tunable Polaritonic Metasurfaces. Advanced Optical Materials, 2014, 2, 1057-1063.	7.3	93
94	THz Difference-Frequency Generation in MOVPE-Grown Quantum Cascade Lasers. IEEE Photonics Technology Letters, 2014, 26, 391-394.	2.5	13
95	External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range. Journal of Optics (United Kingdom), 2014, 16, 094002.	2.2	47
96	Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources. Nature Communications, 2014, 5, 4267.	12.8	69
97	Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 2014, 511, 65-69.	27.8	550
98	Broadly Tunable Room Temperature Monolithic Terahertz Quantum Cascade Laser Sources., 2014,,.		1
99	Ultra-sensitive mid-infrared photoexpansion nanospectroscopy with background suppression. , 2014, , .		0
100	Ultrafast voltage-tunable plasmonic metamaterials based on intersubband polaritons. , 2014, , .		0
101	Widely-Tunable Monolithic Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation., 2014,,.		0
102	Mid-Infrared Quantum Cascade Lasers With Electrical Control of the Emission Frequency. IEEE Journal of Quantum Electronics, 2013, 49, 60-64.	1.9	9
103	Terahertz and mid-infrared photoexpansion nanospectroscopy. Proceedings of SPIE, 2013, , .	0.8	0
104	Distributed feedback quantum cascade laser with optically tunable emission frequency. Applied Physics Letters, 2013, 103, 041120.	3.3	5
105	Metamaterials based on intersubband polaritons. , 2013, , .		3
106	Mid-wave infrared and terahertz quantum cascade lasers based on resonant nonlinear frequency mixing. Proceedings of SPIE, 2013 , , .	0.8	0
107	Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nature Communications, 2013, 4, 2021.	12.8	167
108	Widely wavelength tunable thermo-optic bandpass filters based on long-range surface plasmon polaritons. , $2013, , .$		0

#	Article	IF	Citations
109	THz quantum cascade lasers for operation above cryogenic temperatures. , 2013, , .		1
110	Optically tunable long wavelength infrared quantum cascade laser operated at room temperature. Applied Physics Letters, 2013, 102, .	3.3	12
111	Injectorless quantum cascade lasers as low threshold THz sources. , 2013, , .		O
112	High performance room-temperature terahertz intracavity difference-frequency generation in quantum cascade lasers. , $2013, \ldots$		0
113	Widely tunable thermo-optic plasmonic bandpass filter. Applied Physics Letters, 2013, 103, 181115.	3.3	3
114	Mid-infrared absorption nanospectroscopy via molecular force detection., 2013,,.		1
115	Room-temperature Quantum Cascade Laser Sources of Terahertz Radiation., 2013,,.		0
116	Terahertz difference-frequency generation in quantum cascade lasers with high conversion efficiency. , $2013, \ldots$		0
117	Terahertz Quantum Cascade Laser Performance for Structures with Variable Barrier Heights. , 2013, , .		0
118	Broadly tunable room temperature terahertz quantum cascade laser sources., 2013,,.		0
119	Widely-tunable optical bandpass filter based on long-range surface plasmon polaritons. , 2012, , .		3
120	Nonlinear GalnAs/AllnAs/InP quantum cascade laser sources for wavelength generation in the 2.7-70 \hat{l} /4m wavelength range. Proceedings of SPIE, 2012, , .	0.8	1
121	Widely wavelength tunable optical filters using characteristics of long-range surface plasmon polaritons. , 2012, , .		0
122	Fast electrical wavelength modulation of mid-infrared quantum cascade lasers., 2012,,.		0
123	Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme. IEEE Transactions on Terahertz Science and Technology, 2012, 2, 83-92.	3.1	59
124	Terahertz sources based on ÄŒerenkov difference-frequency generation in quantum cascade lasers. Applied Physics Letters, 2012, 100, .	3.3	93
125	Terahertz quantum cascade laser sources based on Cherenkov intra-cavity difference-frequency generation. , 2012, , .		0
126	Terahertz quantum cascade laser sources based on ÄŒerenkov difference-frequency generation. , 2012, , .		1

#	Article	IF	Citations
127	Terahertz quantum cascade laser sources based on difference-frequency generation: from passive nonlinearity to leaky THz waveguide device concept. Proceedings of SPIE, 2012, , .	0.8	1
128	Plasmonic-enhanced infrared photoexpansion nano-spectroscopy using tunable quantum cascade lasers. , 2012, , .		0
129	Improved terahertz quantum cascade laser with variable height barriers. Journal of Applied Physics, 2012, 111, 103106.	2.5	24
130	Shortâ€wavelength InP quantum cascade laser sources by quasiâ€phaseâ€matched intracavity secondâ€harmonic generation. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 298-301.	0.8	4
131	Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nature Communications, 2012, 3, 870.	12.8	868
132	Tip-enhanced photoexpansion nano-spectroscopy using tunable quantum cascade lasers. , 2012, , .		0
133	Terahertz Quantum Cascade Laser Sources Based on Cherenkov Intra-Cavity Difference-Frequency Generation. , 2012, , .		0
134	Widely tunable waveguide filters based on long-range surface plasmon polaritons., 2011,,.		0
135	Terahertz sources based on intracavity frequency mixing in mid-infrared quantum cascade lasers with passive nonlinear sections. Applied Physics Letters, 2011, 98, 151114.	3.3	9
136	GaAs/Al <inf>0.15</inf> Ga <inf>0.85</inf> As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K., 2011,,.		0
137	Intersubband Raman laser for operation in terahertz., 2011,,.		0
138	Quantum-cascade laser-based nanoscale photoexpansion micro-spectroscopy in mid-infrared and terahertz. , 2011, , .		0
139	InGaAs/AllnAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range. , 2011, , .		2
140	Room-temperature 2.95â€[micro sign]m quantum cascade laser sources based on intra-cavity frequency doubling. Electronics Letters, 2011, 47, 667.	1.0	3
141	Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Optics Express, 2011, 19, 19942.	3.4	95
142	Broadly wavelength tunable bandpass filters based on long-range surface plasmon polaritons. Optics Letters, 2011, 36, 3744.	3.3	11
143	Upper limits on terahertz difference frequency generation power in quantum well heterostructures. , $2011, \ldots$		1
144	Room-Temperature \$\text{lambdaapprox 2.7~mu{m m}\$ Quantum Cascade Laser Sources Based on Intracavity Second-Harmonic Generation. IEEE Journal of Quantum Electronics, 2011, 47, 691-697.	1.9	10

#	Article	IF	CITATIONS
145	THz quantum cascade sources based on intra-cavity frequency mixing in passive nonlinear sections. , 2011, , .		0
146	THz Quantum Cascade Sources based on Intra-cavity Frequency Mixing in Passive Nonlinear Sections. , 2011, , .		1
147	Surface-emitting THz sources based on difference-frequency generation in mid-infrared quantum cascade lasers. Proceedings of SPIE, 2010, , .	0.8	5
148	Terahertz sources based on difference-frequency generation near exit facets in dual-wavelength mid-infrared quantum cascade lasers. , $2010, , .$		0
149	Room-temperature operation of 3.6â€,μmâ€`In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser sources based on intracavity second harmonic generation. Applied Physics Letters, 2010, 97, .	3.3	14
150	GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K. Applied Physics Letters, 2010, 97, 131111.	3.3	31
151	Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs. Applied Physics Letters, 2010, 96, .	3.3	35
152	Dynamics of actively mode-locked Quantum Cascade Lasers. Optics Express, 2010, 18, 13616.	3.4	46
153	Corrections to "High Performance Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy and Their Applications to Trace Gas Sensing―[Nov 08 3534-3555]. Journal of Lightwave Technology, 2010, 28, 984-984.	4.6	0
154	Injectorless quantum cascade lasers for room-temperature short-wavelength emission by efficient second-harmonic generation. , 2010, , .		0
155	Mode-locking via active gain modulation in quantum cascade lasers. , 2009, , .		1
156	Directional emission and universal far-field behavior from semiconductor lasers with lima \tilde{A} on-shaped microcavity. Applied Physics Letters, 2009, 94, .	3.3	103
157	Broadband Distributed Feedback Quantum Cascade Laser Array Using A Heterogeneous Cascade. , 2009,		1
158	Deformed microcavity quantum cascade lasers with directional emission. New Journal of Physics, 2009, 11, 125018.	2.9	33
159	High-Temperature Operation of Terahertz Quantum Cascade Laser Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 952-967.	2.9	111
160	Angular emission characteristics of quantum cascade spiral microlasers. Optics Express, 2009, 17, 10335.	3.4	28
161	Mode-locked pulses from mid-infrared Quantum Cascade Lasers. Optics Express, 2009, 17, 12929.	3.4	168
162	Beam combining of quantum cascade laser arrays. Optics Express, 2009, 17, 16216.	3.4	69

#	Article	IF	Citations
163	Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 \$mu\$m. IEEE Photonics Technology Letters, 2009, 21, 914-916.	2.5	63
164	Multi-beam multi-wavelength semiconductor lasers. Applied Physics Letters, 2009, 95, .	3.3	21
165	DFB Quantum Cascade Laser Arrays. IEEE Journal of Quantum Electronics, 2009, 45, 554-565.	1.9	94
166	Wavelength beam combining of quantum cascade laser arrays for remote sensing. Proceedings of SPIE, 2009, , .	0.8	3
167	Directional micro-cavity lasers with Lima $ ilde{A}$ son-shaped chaotic resonator. , 2009, , .		0
168	Spatial Hole Burning in Actively Mode-Locked Quantum Cascade Lasers. , 2009, , .		1
169	Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation. Applied Physics Letters, 2008, 92, .	3.3	199
170	High-Performance Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy and Their Applications to Trace Gas Sensing. Journal of Lightwave Technology, 2008, 26, 3534-3555.	4.6	46
171	Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. Optics Express, 2008, 16, 3242.	3.4	194
172	Terahertz frequency quantum cascade lasers operating up to $178\mathrm{K}$ with copper metal-metal waveguides. , $2008,$, .		0
173	Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation. Applied Physics Letters, 2008, 93, 161110.	3.3	26
174	Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression. Applied Physics Letters, 2008, 92, .	3.3	46
175	Microwatt-level terahertz sources based on intra-cavity difference-frequency generation in mid-infrared quantum cascade lasers. , 2008, , .		3
176	Continuously tunable compact single-mode quantum cascade laser source for chemical sensing. , 2008, , .		0
177	Wide ridge low-divergence metal-metal terahertz quantum cascade lasers. , 2008, , .		0
178	Terahertz quantum cascade lasers operating up to 178 K with copper metal-metal waveguides., 2008,,.		0
179	Nonlinear Quantum Cascade Lasers: Toward Broad Tunability and Short-Wavelength Operation. , 2007,		0
180	Terahertz Quantum Cascade Laser Source Based on Intra-Cavity Difference-Frequency Generation. , 2007, , .		1

#	Article	IF	Citations
181	Erratum for â€~Double-metal waveguide ≃19â€[micro sign]m quantum cascade lasers grown by metal organic vapour phase epitaxy'. Electronics Letters, 2007, 43, 1476.	1.0	O
182	Fully-integrated implementation of large time constant Gm-C integrators. Electronics Letters, 2007, 43, 23.	1.0	11
183	Plasmonic quantum cascade laser antenna. Applied Physics Letters, 2007, 91, 173113.	3.3	70
184	Terahertz difference frequency generation in quantum cascade lasers., 2007,,.		0
185	Current Injection Spiral-Shaped Chaotic Microcavity Quantum Cascade Lasers. , 2007, , .		1
186	Low-Divergence Surface-Emitting Terahertz Quantum Cascade Lasers. , 2007, , .		0
187	Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators. Applied Physics Letters, 2007, 91, .	3.3	41
188	Broadly Tunable Single-Mode Quantum Cascade Laser Source. , 2007, , .		0
189	Design and fabrication of photonic crystal quantum cascade lasers for optofluidics. Optics Express, 2007, 15, 4499.	3.4	31
190	Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers. Optics Express, 2007, 15, 11262.	3.4	19
191	Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Applied Physics Letters, 2007, 91, .	3.3	190
192	Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nature Photonics, 2007, 1, 288-292.	31.4	283
193	Toward Chiral Sum-Frequency Spectroscopy. Journal of the American Chemical Society, 2006, 128, 8845-8848.	13.7	50
194	Microfluidic tuning of distributed feedback quantum cascade lasers. Optics Express, 2006, 14, 11660.	3.4	38
195	Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Optics Express, 2006, 14, 11672.	3.4	121
196	Quasiphase matching of second-harmonic generation in quantum cascade lasers by Stark shift of electronic resonances. Applied Physics Letters, 2006, 88, 201108.	3.3	9
197	Chirality Probed by Sum-Frequency Vibrational Spectroscopy for Helically Structured Conjugated Liquid Crystalline Polymers. Molecular Crystals and Liquid Crystals, 2005, 436, 73/[1027]-81/[1035].	0.9	3
198	Non-linear optical spectroscopy as a novel probe for molecular chirality. International Reviews in Physical Chemistry, 2005, 24, 257-299.	2.3	105

#	Article	IF	CITATIONS
199	Sum-frequency vibrational spectroscopy of chiral liquids off and close to electronic resonance and the antisymmetric Raman tensor. Journal of Chemical Physics, 2004, 120, 10118-10126.	3.0	48
200	Sum-Frequency Vibrational Spectroscopy of a Helically Structured Conjugated Polymer. Physical Review Letters, 2004, 93, 267402.	7.8	42
201	Optically active second-harmonic generation from a uniaxial fluid medium. Optics Letters, 2004, 29, 1527.	3.3	9
202	Resonant sum-frequency generation in chiral liquids. Optical Materials, 2003, 21, 1-5.	3.6	12
203	Doubly Resonant IR-UV Sum-Frequency Vibrational Spectroscopy on Molecular Chirality. Physical Review Letters, 2003, 91, 213907.	7.8	91
204	Sum-frequency spectroscopy of electronic resonances on a chiral surface monolayer of bi-naphthol. Physical Review B, 2002, 66, .	3.2	45
205	Coupled-oscillator model for nonlinear optical activity. Chemical Physics Letters, 2002, 363, 479-485.	2.6	43
206	Sum-Frequency Generation in Chiral Liquids near Electronic Resonance. Physical Review Letters, 2001, 87, 113001.	7.8	134
207	Anomalous dispersion, differential gain, and dispersion of the α-factor in InGaAs/AlGaAs/GaAs strained quantum-well semiconductor lasers. Semiconductors, 2000, 34, 1207-1213.	0.5	2
208	Sum-Frequency Vibrational Spectroscopy on Chiral Liquids: A Novel Technique to Probe Molecular Chirality. Physical Review Letters, 2000, 85, 4474-4477.	7.8	190
209	Experimental study of the α-factor in InGaAs/AlGaAs/GaAs strained quantum-well lasers. Quantum Electronics, 2000, 30, 315-320.	1.0	4
210	Sum-frequency vibrational spectroscopy on molecular chirality. , 0, , .		0