Barbara Fazekas de St Groth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/869764/publications.pdf Version: 2024-02-01

		66343	24982
118	12,334	42	109
papers	citations	h-index	g-index
124	124	124	13316
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 2022, 10, 9.	11.1	46
2	Immunoprofiling reveals cell subsets associated with the trajectory of cytomegalovirus reactivation post stem cell transplantation. Nature Communications, 2022, 13, 2603.	12.8	8
3	CD73+ CD127high Long-Term Memory CD4 T Cells Are Highly Proliferative in Response to Recall Antigens and Are Early Targets in HIV-1 Infection. International Journal of Molecular Sciences, 2021, 22, 912.	4.1	2
4	Effects of storage time and temperature on highly multiparametric flow analysis of peripheral blood samples; implications for clinical trial samples. Bioscience Reports, 2021, 41, .	2.4	20
5	The Role of Antigen-Competitive Dynamics in Regulating the Immune Response. Bulletin of Mathematical Biology, 2021, 83, 40.	1.9	0
6	Stable and Highly Efficient Antibody–Nanoparticles Conjugation. Bioconjugate Chemistry, 2021, 32, 1146-1155.	3.6	13
7	T lymphocyte and monocyte subsets are dysregulated in type 1 diabetes patients with peripheral neuropathic pain. Brain, Behavior, & Immunity - Health, 2021, 15, 100283.	2.5	5
8	Distinguishing human peripheral blood CD16 + myeloid cells based on phenotypic characteristics. Journal of Leukocyte Biology, 2020, 107, 323-339.	3.3	8
9	Singleâ€Cell Immune Profiling in Coronary Artery Disease: The Role of Stateâ€ofâ€theâ€Art Immunophenotyping With Mass Cytometry in the Diagnosis of Atherosclerosis. Journal of the American Heart Association, 2020, 9, e017759.	3.7	19
10	Pediatric Burn Survivors Have Long-Term Immune Dysfunction With Diminished Vaccine Response. Frontiers in Immunology, 2020, 11, 1481.	4.8	13
11	Rapidly expanded partially HLA DRB1–matched fungus-specific T cells mediate in vitro and in vivo antifungal activity. Blood Advances, 2020, 4, 3443-3456.	5.2	12
12	Inverse relationship between oligoclonal expanded CD69â^' TTE and CD69+ TTE cells in bone marrow of multiple myeloma patients. Blood Advances, 2020, 4, 4593-4604.	5.2	16
13	Inflammation and Oral Contraceptive Use in Female Athletes Before the Rio Olympic Games. Frontiers in Physiology, 2020, 11, 497.	2.8	24
14	Pretreatment Innate Cell Populations and CD4 T Cells in Blood Are Associated With Response to Immune Checkpoint Blockade in Melanoma Patients. Frontiers in Immunology, 2020, 11, 372.	4.8	20
15	Mass cytometry reveals immune signatures associated with cytomegalovirus (CMV) control in recipients of allogeneic haemopoietic stem cell transplant and CMVâ€specific T cells. Clinical and Translational Immunology, 2020, 9, e1149.	3.8	18
16	Mapping the extent of heterogeneity of human CCR5+ CD4+ T cells in peripheral blood and lymph nodes. Aids, 2020, 34, 833-848.	2.2	17
17	Brick plots: an intuitive platform for visualizing multiparametric immunophenotyped cell clusters. BMC Bioinformatics, 2020, 21, 145.	2.6	4
18	Mass Cytometry Discovers Two Discrete Subsets of CD39â^'Treg Which Discriminate MGUS From Multiple Myeloma. Frontiers in Immunology, 2019, 10, 1596.	4.8	18

#	Article	IF	CITATIONS
19	Pembrolizumab for anaplastic thyroid cancer: a case study. Cancer Immunology, Immunotherapy, 2019, 68, 1921-1934.	4.2	13
20	Regulatory roles of IL-10–producing human follicular T cells. Journal of Experimental Medicine, 2019, 216, 1843-1856.	8.5	62
21	Titration of Mass Cytometry Reagents. Methods in Molecular Biology, 2019, 1989, 83-92.	0.9	5
22	Expansion and activation of distinct central memory T lymphocyte subsets in complex regional pain syndrome. Journal of Neuroinflammation, 2019, 16, 63.	7.2	34
23	High-Dimensional Mass Cytometric Analysis Reveals an Increase in Effector Regulatory T Cells as a Distinguishing Feature of Colorectal Tumors. Journal of Immunology, 2019, 202, 1871-1884.	0.8	19
24	Bringing Mass Cytometry Into The Clinic. Pathology, 2019, 51, S52-S53.	0.6	0
25	IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. Science Immunology, 2019, 4, .	11.9	75
26	Accumulation of CD69+ Terminal Effector CD8+ T cells occurs in the bone marrow of newly diagnosed Myeloma patients who lack protective clonal Vb expanded cytotoxic T cells. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e29.	0.4	1
27	Activated and Bone-marrow Resident Treg Alterations Underlie Malignant Transformation from MGUS to Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e100.	0.4	0
28	Widespread alterations in the peripheral blood innate immune cell profile in cystic fibrosis reflect lung pathology. Immunology and Cell Biology, 2019, 97, 416-426.	2.3	8
29	TCR deep sequencing of transgenic RAG-1-deficient mice reveals endogenous TCR recombination: a cause for caution. Immunology and Cell Biology, 2018, 96, 642-645.	2.3	8
30	A blood dendritic cell vaccine for acute myeloid leukemia expands anti-tumor T cell responses at remission. Oncolmmunology, 2018, 7, e1419114.	4.6	24
31	Anti-PD-1-induced high-grade hepatitis associated with corticosteroid-resistant T cells: a case report. Cancer Immunology, Immunotherapy, 2018, 67, 563-573.	4.2	50
32	Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2018, 9, 1672.	4.8	46
33	Immunotherapyâ€induced sarcoidosis in patients with melanoma treated with <scp>PD</scp> â€1 checkpoint inhibitors: Case series and immunophenotypic analysis. International Journal of Rheumatic Diseases, 2017, 20, 1277-1285.	1.9	89
34	Oral supplementation with bovine whey-derived Ig-rich fraction and lactoferrin improves SCORAD and DLQI in atopic dermatitis. Journal of Dermatological Science, 2017, 85, 143-146.	1.9	7
35	Pro- and anti-tumour effects of B cells and antibodies in cancer: a comparison of clinical studies and preclinical models. Cancer Immunology, Immunotherapy, 2016, 65, 885-896.	4.2	24
36	EZH2 as a mediator of treatment resistance in melanoma. Pigment Cell and Melanoma Research, 2016, 29, 500-507.	3.3	37

#	Article	IF	CITATIONS
37	Probiotic supplementation has little effect on peripheral blood regulatory TÂcells. Journal of Allergy and Clinical Immunology, 2016, 138, 1749-1752.e7.	2.9	7
38	The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. Journal of Immunology, 2016, 197, 4613-4625.	0.8	34
39	Tumourâ€specific CD4 T cells eradicate melanoma via indirect recognition of tumourâ€derived antigen. Immunology and Cell Biology, 2016, 94, 593-603.	2.3	34
40	Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity. Oncotarget, 2016, 7, 30211-30229.	1.8	15
41	IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. Journal of Allergy and Clinical Immunology, 2015, 136, 1653-1663.e7.	2.9	123
42	The effects of IL-2 and Treg cells on dendritic cell homeostasis are mediated indirectly via activation of conventional T cells. European Journal of Immunology, 2015, 45, 1141-1147.	2.9	5
43	Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. Journal of Clinical Investigation, 2015, 125, 3627-3641.	8.2	70
44	A Systems Biology Approach to the Analysis of Subset-Specific Responses to Lipopolysaccharide in Dendritic Cells. PLoS ONE, 2014, 9, e100613.	2.5	7
45	CD326loCD103loCD11blo Dermal Dendritic Cells Are Activated by Thymic Stromal Lymphopoietin during Contact Sensitization in Mice. Journal of Immunology, 2014, 193, 2504-2511.	0.8	49
46	Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nature Immunology, 2013, 14, 564-573.	14.5	410
47	Experimental models to investigate the function of dendritic cell subsets: challenges and implications. Clinical and Experimental Immunology, 2013, 171, 147-154.	2.6	9
48	Phenotype and functions of conventional dendritic cells are not compromised in aged mice. Immunology and Cell Biology, 2012, 90, 722-732.	2.3	31
49	Regulatory Tâ€cell abnormalities and the global epidemic of immunoâ€inflammatory disease. Immunology and Cell Biology, 2012, 90, 256-259.	2.3	22
50	Flow Cytometric Detection of Human Regulatory T Cells. Methods in Molecular Biology, 2011, 707, 263-279.	0.9	29
51	Immunotherapy with Costimulatory Dendritic Cells To Control Autoimmune Inflammation. Journal of Immunology, 2011, 187, 4018-4030.	0.8	29
52	Cutaneous immunosurveillance by self-renewing dermal γδT cells. Journal of Experimental Medicine, 2011, 208, 505-518.	8.5	248
53	Langerhans cells are precommitted to immune tolerance induction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18049-18054.	7.1	150
54	Antigen Load Governs the Differential Priming of CD8 T Cells in Response to the Bacille Calmette Guelrin Vaccine or <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2009, 182, 7172-7177.	0.8	66

#	Article	IF	CITATIONS
55	Systemic Increase in the Ratio between Foxp3+ and IL-17-Producing CD4+ T Cells in Healthy Pregnancy but Not in Preeclampsia. Journal of Immunology, 2009, 183, 7023-7030.	0.8	425
56	Visualizing dendritic cell migration within the skin. Histochemistry and Cell Biology, 2008, 130, 1131-1146.	1.7	52
57	Special regulatory T-cell review: T-cell dependent suppression revisited. Immunology, 2008, 123, 33-39.	4.4	19
58	Association Between CD4+CD25highFoxP3+ T Regulatory Cells And Asthma, Eczema And Atopy In 8 Year Old Children. Journal of Allergy and Clinical Immunology, 2008, 121, S116-S117.	2.9	0
59	Accelerated age-dependent transition of human regulatory T cells to effector memory phenotype. International Immunology, 2008, 20, 375-383.	4.0	54
60	Regulatory T cells in HIV infection: pathogenic or protective participants in the immune response?. Aids, 2008, 22, 671-683.	2.2	65
61	Epidermal and Dermal Dendritic Cells Display Differential Activation and Migratory Behavior While Sharing the Ability to Stimulate CD4+ T Cell Proliferation In Vivo. Journal of Immunology, 2008, 181, 418-430.	0.8	91
62	Improved Protection against Disseminated Tuberculosis byMycobacterium bovisBacillus Calmette-Guérin Secreting Murine GM-CSF Is Associated with Expansion and Activation of APCs. Journal of Immunology, 2007, 179, 8418-8424.	0.8	41
63	Effects of DNA- and <i>Mycobacterium bovis</i> BCG-Based Delivery of the Flt3 Ligand on Protective Immunity to <i>Mycobacterium tuberculosis</i> . Infection and Immunity, 2007, 75, 5368-5375.	2.2	30
64	Regulatory Tâ€cell function: When suppressor cells can't suppress. Immunology and Cell Biology, 2007, 85, 179-181.	2.3	3
65	Balancing Tolerance and Immunity. Methods in Molecular Biology, 2007, 380, 25-46.	0.9	13
66	CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. Journal of Experimental Medicine, 2006, 203, 1701-1711.	8.5	2,292
67	Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. Journal of Experimental Medicine, 2006, 203, 1693-1700.	8.5	1,354
68	Persistence of naive CD45RA+ regulatory T cells in adult life. Blood, 2006, 107, 2830-2838.	1.4	246
69	Severely Impaired Clonal Deletion of CD4+ T Cells in Low-Dose Irradiated Mice: Role of T Cell Antigen Receptor and IL-7 Receptor Signals. Journal of Immunology, 2006, 177, 8320-8330.	0.8	19
70	Infection of CD127 + (Interleukin-7 Receptor +) CD4 + Cells and Overexpression of CTLA-4 Are Linked to Loss of Antigen-Specific CD4 T Cells during Primary Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2006, 80, 10162-10172.	3.4	84
71	Evidence for a Domain-Swapped CD4 Dimer as the Coreceptor for Binding to Class II MHC. Journal of Immunology, 2006, 176, 6873-6878.	0.8	42
72	Tissue localization and frequency of antigenâ€specific effector CD4 + T cells determines the development of allergic airway inflammation. Immunology and Cell Biology, 2005, 83, 490-497.	2.3	3

#	Article	IF	CITATIONS
73	Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature, 2005, 435, 590-597.	27.8	586
74	Condensation of the plasma membrane at the site of T lymphocyte activation. Journal of Cell Biology, 2005, 171, 121-131.	5.2	228
75	Bystander Activation of CD8 + T Lymphocytes during Experimental Mycobacterial Infection. Infection and Immunity, 2004, 72, 6884-6891.	2.2	38
76	Dependency of Direct Pathway CD4+ T Cells on CD40-CD154 Costimulation Is Determined by Nature and Microenvironment of Primary Contact with Alloantigen. Journal of Immunology, 2004, 172, 2163-2170.	0.8	18
77	T cell activation: in vivo veritas. Immunology and Cell Biology, 2004, 82, 260-268.	2.3	41
78	Clonal Cytotoxic T Cells in Myeloma. Leukemia and Lymphoma, 2003, 44, 1667-1674.	1.3	29
79	Prediction of High Affinity Class I-restricted Multiple Myeloma Idiotype Peptide Epitopes. Leukemia and Lymphoma, 2003, 44, 1557-1568.	1.3	10
80	Prediction of High Affinity Class I-restricted Multiple Myeloma Idiotype Peptide Epitopes. Leukemia and Lymphoma, 2003, 44, 1557-1568.	1.3	9
81	Cytokine-dependent bystander hepatitis due to intrahepatic murine CD8+ T-cell activation by bone marrow–derived cells. Gastroenterology, 2002, 123, 1252-1264.	1.3	82
82	Experimental models linking dendritic cell lineage, phenotype and function. Immunology and Cell Biology, 2002, 80, 469-476.	2.3	6
83	DCs and peripheral T cell tolerance. Seminars in Immunology, 2001, 13, 311-321.	5.6	18
84	Clonal cytotoxic T cells are expanded in myeloma and reside in the CD8+CD57+CD28â^' compartment. Blood, 2001, 98, 2817-2827.	1.4	131
85	CD80 Costimulation Is Required for Th2 Cell Cytokine Production But Not for Antigen-Specific Accumulation and Migration into the Lung. Journal of Immunology, 2001, 166, 4908-4914.	0.8	19
86	Antigen-Specific Primary Activation of CD8+ T Cells Within the Liver. Journal of Immunology, 2001, 166, 5430-5438.	0.8	192
87	Induction of Rapid T Cell Activation, Division, and Recirculation by Intratracheal Injection of Dendritic Cells in a TCR Transgenic Model. Journal of Immunology, 2000, 164, 2937-2946.	0.8	170
88	Visualizing T Cell Competition for Peptide/MHC Complexes. Immunity, 2000, 13, 783-794.	14.3	102
89	Death by neglect as a deletional mechanism of peripheral tolerance. International Immunology, 1999, 11, 1225-1238.	4.0	83
90	The Avidity Spectrum of  T Cell Receptor Interactions Accounts for T Cell Anergy in a Double Transgenic Model. Journal of Experimental Medicine, 1999, 189, 265-278.	8.5	46

#	Article	IF	CITATIONS
91	Antigen-pulsed CD8α+ Dendritic Cells Generate an Immune Response after Subcutaneous Injection without Homing to the Draining Lymph Node. Journal of Experimental Medicine, 1999, 189, 593-598.	8.5	149
92	Carboxyfluorescein diacetate succinimidyl ester and the virgin lymphocyte: A marriage made in heaven. Immunology and Cell Biology, 1999, 77, 530-538.	2.3	52
93	Rescue of self-reactive B cells by provision of T cell helpin vivo. European Journal of Immunology, 1998, 28, 2549-2558.	2.9	42
94	Influence of B cell receptor ligation and TCR affinity on T-B collaborationin vitro. European Journal of Immunology, 1998, 28, 4037-4049.	2.9	15
95	Nature versus nurture: Contributions of developmental programming and the microenvironment to B cell tolerance. Immunology and Cell Biology, 1998, 76, 369-372.	2.3	1
96	The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Trends in Immunology, 1998, 19, 448-454.	7.5	167
97	Influence of B cell receptor ligation and TCR affinity on T-B collaboration in vitro. European Journal of Immunology, 1998, 28, 4037-4049.	2.9	0
98	Outer Periarteriolar Lymphoid Sheath Arrest and Subsequent Differentiation of Both Naive and Tolerant Immunoglobulin Transgenic B Cells Is Determined by B Cell Receptor Occupancy. Journal of Experimental Medicine, 1997, 186, 631-643.	8.5	75
99	The Role of T Cells in the Regulation of B Cell Tolerance. International Reviews of Immunology, 1997, 15, 73-99.	3.3	9
100	Distinct roles for lymphotoxin-α and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue. European Journal of Immunology, 1997, 27, 2600-2609.	2.9	305
101	Role of Dendritic Cells in Induction of Tolerance and Immunity in Vivo. Advances in Experimental Medicine and Biology, 1997, 417, 255-263.	1.6	8
102	Regulation of the immune response – lessons from transgenic models. Australian and New Zealand Journal of Medicine, 1995, 25, 761-767.	0.5	7
103	Interleukin 4 suppresses interleukin 2 and interferon gamma production by naive T cells stimulated by accessory cell-dependent receptor engagement Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5914-5918.	7.1	135
104	An Analysis of T Cell Receptor–Ligand Interaction Using a Transgenic Antigen Model for T Cell Tolerance and T Cell Receptor Mutagenesis. , 1993, , 123-127.		7
105	The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice Journal of Experimental Medicine, 1992, 176, 1091-1098.	8.5	968
106	Mapping T-cell receptor–peptide contacts by variant peptide immunization of single-chain transgenics. Nature, 1992, 355, 224-230.	27.8	512
107	Low affinity interaction of peptide-MHC complexes with T cell receptors. Science, 1991, 254, 1788-1791.	12.6	344
108	Phenotypic differences between αβ versus β T-cell receptor transgenic mice undergoing negative selection. Nature, 1989, 340, 559-562.	27.8	148

#	Article	IF	CITATIONS
109	Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell, 1989, 58, 1035-1046.	28.9	378
110	CD4 and CD8 molecules can physically associate with the same T-cell receptor Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 10044-10048.	7.1	38
111	Expression of T-cell receptor alpha-chain genes in transgenic mice Molecular and Cellular Biology, 1988, 8, 5459-5469.	2.3	59
112	Abelson virus transformation of an interleukin 2-dependent antigen-specific T-cell line Molecular and Cellular Biology, 1987, 7, 2631-2635.	2.3	36
113	Coaggregation of the T-cell receptor with CD4 and other T-cell surface molecules enhances T-cell activation Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 9209-9213.	7.1	73
114	High-affinity interleukin 2 binding by an oncogenic hybrid interleukin 2-epidermal growth factor receptor molecule Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 2125-2129.	7.1	17
115	P Cell Stimulating Factor Release: A Useful Assay of T Cell Activation in vitro. International Archives of Allergy and Immunology, 1986, 79, 169-177.	2.1	10
116	Stable expression of Lyt-2 homodimers on L3T4+T cell clones. European Journal of Immunology, 1986, 16, 1413-1417.	2.9	13
117	Induction of memory and effector suppressor T cells by perinatal exposure to antigen. European Journal of Immunology, 1984, 14, 228-235.	2.9	17

Balancing Tolerance and Immunity: The Role of Dendritic Cell and T Cell Subsets. , 0, , 25-46.