Enrico Moro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8696969/publications.pdf

Version: 2024-02-01

all docs

59 3,514 32 58 papers citations h-index g-index

62 62 62 62 4650

times ranked

docs citations

citing authors

#	Article	IF	CITATIONS
1	Lysosomal Storage Disorders: Molecular Basis and Therapeutic Approaches. Biomolecules, 2021, 11, 964.	4.0	3
2	Lysosomal Function and Axon Guidance: Is There a Meaningful Liaison?. Biomolecules, 2021, 11, 191.	4.0	8
3	A transcriptional and post-transcriptional dysregulation of Dishevelled 1 and 2 underlies the Wnt signaling impairment in type I Gaucher disease experimental models. Human Molecular Genetics, 2020, 29, 274-285.	2.9	4
4	"Janus―efficacy of CX-5011: CK2 inhibition and methuosis induction by independent mechanisms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118807.	4.1	14
5	Temporal control of Wnt signaling is required for habenular neuron diversity and brain asymmetry. Development (Cambridge), 2020, 147, .	2.5	14
6	Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction. Cell Reports, 2019, 28, 1949-1960.e6.	6.4	56
7	FGF signaling deregulation is associated with early developmental skeletal defects in animal models for mucopolysaccharidosis type II (MPSII). Human Molecular Genetics, 2018, 27, 2262-2275.	2.9	27
8	The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to abnormal development and neuroinflammation. Human Molecular Genetics, 2018, 27, R119-R129.	2.9	59
9	The Golgi â€~casein kinase' Fam20C is a genuine â€~phosvitin kinase' and phosphorylates polyserine stretches devoid of the canonical consensus. FEBS Journal, 2018, 285, 4674-4683.	4.7	10
10	Perturbations in cell signaling elicit early cardiac defects in mucopolysaccharidosis type II. Human Molecular Genetics, 2017, 26, 1643-1655.	2.9	34
11	Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/l²-catenin signaling. Human Molecular Genetics, 2015, 24, 1280-1294.	2.9	46
12	Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. DMM Disease Models and Mechanisms, 2014, 7, 883-94.	2.4	37
13	A Smad3 transgenic reporter reveals TGF-beta control of zebrafish spinal cord development. Developmental Biology, 2014, 396, 81-93.	2.0	52
14	Intracardiac flow dynamics regulate atrioventricular valve morphogenesis. Cardiovascular Research, 2014, 104, 49-60.	3.8	67
15	Simplet/Fam53b is required for Wnt signal transduction by regulating \hat{l}^2 -catenin nuclear localization. Development (Cambridge), 2014, 141, 3529-3539.	2.5	35
16	A living biosensor model to dynamically trace glucocorticoid transcriptional activity during development and adult life in zebrafish. Molecular and Cellular Endocrinology, 2014, 392, 60-72.	3.2	34
17	Wnt/ \hat{l}^2 -Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin. Cell Reports, 2014, 6, 467-481.	6.4	163
18	Synthesis and biological evaluation of imidazo [1,2-a] pyrimidines and imidazo [1,2-a] pyridines as new inhibitors of the Wnt/ \hat{l}^2 -catenin signaling. European Journal of Medicinal Chemistry, 2014, 83, 45-56.	5.5	16

#	Article	IF	CITATIONS
19	Simplet/Fam53b is required for Wnt signal transduction by regulating \hat{l}^2 -catenin nuclear localization. Journal of Cell Science, 2014, 127, e1-e1.	2.0	0
20	Wnt activation promotes neuronal differentiation of Glioblastoma. Cell Death and Disease, 2013, 4, e500-e500.	6.3	89
21	Generation and application of signaling pathway reporter lines in zebrafish. Molecular Genetics and Genomics, 2013, 288, 231-242.	2.1	66
22	RAB8B Is Required for Activity and Caveolar Endocytosis of LRP6. Cell Reports, 2013, 4, 1224-1234.	6.4	65
23	Emilin3 is required for notochord sheath integrity and interacts with Scube2 to regulate notochord-derived Hedgehog signals. Development (Cambridge), 2013, 140, 4594-4601.	2.5	38
24	Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Frontiers in Endocrinology, 2012, 3, 91.	3.5	47
25	Diverse Chemical Scaffolds Support Direct Inhibition of the Membrane-bound O-Acyltransferase Porcupine. Journal of Biological Chemistry, 2012, 287, 23246-23254.	3.4	72
26	Wnt Signaling Regulates Postembryonic Hypothalamic Progenitor Differentiation. Developmental Cell, 2012, 23, 624-636.	7.0	90
27	In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Developmental Biology, 2012, 366, 327-340.	2.0	227
28	Lef1-dependent Wnt \hat{l}^2 -catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development (Cambridge), 2011, 138, 3931-3941.	2.5	65
29	Developmental defects and neuromuscular alterations due to mitofusin 2 gene (MFN2) silencing in zebrafish: a new model for Charcot-Marie-Tooth type 2A neuropathy. Neuromuscular Disorders, 2011, 21, 58-67.	0.6	33
30	Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to $\langle i \rangle$ HHEX $\langle i \rangle$, $\langle i \rangle$ SOX4 $\langle i \rangle$, and $\langle i \rangle$ IRX3 $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 775-780.	7.1	189
31	A novel functional role of iduronate-2-sulfatase in zebrafish early development. Matrix Biology, 2010, 29, 43-50.	3.6	37
32	af9 Regulates gata2 Expression During Early Hemangioblast Specification and Vascular Pattern Formation In Zebrafish Blood, 2010, 116, 2600-2600.	1.4	1
33	Analysis of beta cell proliferation dynamics in zebrafish. Developmental Biology, 2009, 332, 299-308.	2.0	24
34	Zebrafish pancreas development. Molecular and Cellular Endocrinology, 2009, 312, 24-30.	3.2	79
35	Zebrafish spata2 is expressed at early developmental stages. International Journal of Developmental Biology, 2007, 51, 241-246.	0.6	7
36	Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3428-3432.	7.1	87

#	Article	lF	CITATIONS
37	Inhibin B plasma concentrations in infertile patients with DAZ gene deletions treated with FSH. European Journal of Endocrinology, 2002, 146, 801-806.	3.7	9
38	A novel approach for the analysis of DAZ gene copy number in severely idiopathic infertile men. Journal of Endocrinological Investigation, 2002, 25, RC1-RC3.	3.3	13
39	Response to local dihydrotestosterone treatment in a patient with partial androgen-insensitivity syndrome due to a novel mutation in the androgen receptor gene. American Journal of Medical Genetics Part A, 2002, 107, 259-260.	2.4	6
40	Y Chromosome Microdeletions and Alterations of Spermatogenesis*. Endocrine Reviews, 2001, 22, 226-239.	20.1	347
41	CDY 1 analysis in infertile patients with DAZ deletions. Journal of Endocrinological Investigation, 2001, 24, RC4-RC6.	3.3	7
42	Different insulin-like 3 (INSL3) gene mutations not associated with human cryptorchidism. Journal of Endocrinological Investigation, 2001, 24, RC13-RC15.	3.3	33
43	Novel insulin-like 3 (INSL3) gene mutation associated with human cryptorchidism. American Journal of Medical Genetics Part A, 2001, 103, 348-349.	2.4	43
44	Sertoli Cell Function in Infertile Patients with and without Microdeletions of theAzoospermia Factorson the Y Chromosome Long Arm1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2414-2419.	3.6	20
45	Novel insulinâ€ike 3 (INSL3) gene mutation associated with human cryptorchidism. American Journal of Medical Genetics Part A, 2001, 103, 348-349.	2.4	1
46	Sertoli Cell Function in Infertile Patients with and without Microdeletions of the Azoospermia Factors on the Y Chromosome Long Arm. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2414-2419.	3.6	14
47	Male Infertility Caused by a de Novo Partial Deletion of the DAZ Cluster on the Y Chromosome 1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4069-4073.	3.6	37
48	Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Human Molecular Genetics, 2000, 9, 1161-1169.	2.9	227
49	Y chromosome. Lancet, The, 2000, 355, 234-235.	13.7	13
50	Y chromosome microdeletions in infertile men with varicocele. Molecular and Cellular Endocrinology, 2000, 161, 67-71.	3.2	33
51	Role of the AZFa candidate genes in male infertility. Journal of Endocrinological Investigation, 2000, 23, 646-651.	3.3	34
52	Y-chromosomal DNA haplotypes in infertile European males carrying Y-microdeletions. Journal of Endocrinological Investigation, 2000, 23, 671-676.	3.3	32
53	Male Infertility Caused by a de Novo Partial Deletion of the DAZ Cluster on the Y Chromosome. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4069-4073.	3.6	33
54	Y Chromosome Microdeletions in Cryptorchidism and Idiopathic Infertility*. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3660-3665.	3.6	74

Enrico Moro

#	Article	IF	CITATION
55	Human male infertility and Y chromosome deletions: role of the AZF-candidate genes DAZ, RBM and DFFRY. Human Reproduction, 1999, 14, 1710-1716.	0.9	138
56	Laboratory guidelines for molecular diagnosis of Yâ€chromosomal microdeletions. Journal of Developmental and Physical Disabilities, 1999, 22, 292-299.	3.6	218
57	Absence of testicular DAZ gene expression in idiopathic severe testiculopathies. Human Reproduction, 1999, 14, 2286-2292.	0.9	27
58	Y Chromosome Microdeletions in Cryptorchidism and Idiopathic Infertility. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3660-3665.	3.6	67
59	High frequency of well-defined Y-chromosome deletions in idiopathic Sertoli cell-only syndrome. Human Reproduction, 1998, 13, 302-307.	0.9	186