C Jessica E Metcalf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8696939/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infectious disease in an era of global change. Nature Reviews Microbiology, 2022, 20, 193-205.	28.6	509
2	Modeling infectious disease dynamics in the complex landscape of global health. Science, 2015, 347, aaa4339.	12.6	492
3	Disease and healthcare burden of COVID-19 in the United States. Nature Medicine, 2020, 26, 1212-1217.	30.7	358
4	The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30547-30553.	7.1	325
5	Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3055-3064.	2.6	322
6	Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science, 2015, 348, 694-699.	12.6	319
7	Assessing the global threat from Zika virus. Science, 2016, 353, aaf8160.	12.6	311
8	Aggregated mobility data could help fight COVID-19. Science, 2020, 368, 145-146.	12.6	303
9	Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science, 2018, 362, 75-79.	12.6	272
10	Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science, 2020, 369, 315-319.	12.6	253
11	The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nature Communications, 2020, 11, 4961.	12.8	246
12	Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 2014, 5, 99-110.	5.2	231
13	The microbiome beyond the horizon of ecological and evolutionary theory. Nature Ecology and Evolution, 2017, 1, 1606-1615.	7.8	216
14	Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet, The, 2016, 388, 728-730.	13.7	213
15	Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science, 2020, 370, 811-818.	12.6	210
16	Why evolutionary biologists should be demographers. Trends in Ecology and Evolution, 2007, 22, 205-212.	8.7	199
17	Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science, 2021, 372, 363-370.	12.6	185
18	Reduced vaccination and the risk of measles and other childhood infections post-Ebola. Science, 2015, 347, 1240-1242.	12.6	169

#	Article	IF	CITATIONS
19	Household COVID-19 risk and in-person schooling. Science, 2021, 372, 1092-1097.	12.6	162
20	Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data. Journal of Infectious Diseases, 2016, 214, S414-S420.	4.0	158
21	Spatial and temporal dynamics of superspreading events in the 2014–2015 West Africa Ebola epidemic. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2337-2342.	7.1	151
22	Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1148-1159.	7.1	146
23	Thirteen challenges in modelling plant diseases. Epidemics, 2015, 10, 6-10.	3.0	145
24	Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11114-11119.	7.1	124
25	Environmental Drivers of the Spatiotemporal Dynamics of Respiratory Syncytial Virus in the United States. PLoS Pathogens, 2015, 11, e1004591.	4.7	119
26	Which interventions work best in a pandemic?. Science, 2020, 368, 1063-1065.	12.6	114
27	Opportunities and challenges in modeling emerging infectious diseases. Science, 2017, 357, 149-152.	12.6	113
28	Hand, Foot, and Mouth Disease in China: Modeling Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination. PLoS Medicine, 2016, 13, e1001958.	8.4	106
29	Towards the endgame and beyond: complexities and challenges for the elimination of infectious diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120137.	4.0	103
30	Understanding Herd Immunity. Trends in Immunology, 2015, 36, 753-755.	6.8	102
31	Modeling the Influence of Genetic and Environmental Variation on the Expression of Plant Life Cycles across Landscapes. American Naturalist, 2015, 185, 212-227.	2.1	94
32	<i><scp>IPM</scp>pack</i> : an <scp>R</scp> package for integral projection models. Methods in Ecology and Evolution, 2013, 4, 195-200.	5.2	93
33	Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170901.	2.6	91
34	Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4111-4118.	2.6	90
35	Partitioning Regulatory Mechanisms of Within-Host Malaria Dynamics Using the Effective Propagation Number. Science, 2011, 333, 984-988.	12.6	86
36	The Cinderella syndrome: why do malaria-infected cells burst at midnight?. Trends in Parasitology, 2013, 29, 10-16.	3.3	83

#	Article	IF	CITATIONS
37	Mathematical models to guide pandemic response. Science, 2020, 369, 368-369.	12.6	83
38	ls lifeâ€history buffering or lability adaptive in stochastic environments?. Oikos, 2009, 118, 972-980.	2.7	82
39	Mapping vaccination coverage to explore the effects of delivery mechanisms and inform vaccination strategies. Nature Communications, 2019, 10, 1633.	12.8	80
40	Vaccine nationalism and the dynamics and control of SARS-CoV-2. Science, 2021, 373, eabj7364.	12.6	80
41	The path of least resistance: aggressive or moderate treatment?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140566.	2.6	79
42	High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries. Vaccine, 2018, 36, 1583-1591.	3.8	78
43	Epidemic dynamics of respiratory syncytial virus in current and future climates. Nature Communications, 2019, 10, 5512.	12.8	78
44	Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nature Medicine, 2021, 27, 447-453.	30.7	77
45	Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics. Nature Communications, 2017, 8, 2069.	12.8	73
46	The potential effect of improved provision of rabies post-exposure prophylaxis in Gavi-eligible countries: a modelling study. Lancet Infectious Diseases, The, 2019, 19, 102-111.	9.1	72
47	Seroepidemiologic Study Designs for Determining SARS-COV-2 Transmission and Immunity. Emerging Infectious Diseases, 2020, 26, 1978-1986.	4.3	71
48	Evolution of Delayed Reproduction in Uncertain Environments: A Lifeâ€History Perspective. American Naturalist, 2008, 172, 797-805.	2.1	68
49	A time to grow and a time to die: a new way to analyze the dynamics of size, light, age, and death of tropical trees. Ecology, 2009, 90, 2766-2778.	3.2	67
50	Forecasting Epidemiological and Evolutionary Dynamics of Infectious Diseases. Trends in Ecology and Evolution, 2016, 31, 776-788.	8.7	66
51	Impact of birth rate, seasonality and transmission rate on minimum levels of coverage needed for rubella vaccination. Epidemiology and Infection, 2012, 140, 2290-2301.	2.1	62
52	Predicting the evolutionary dynamics of seasonal adaptation to novel climates in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2812-21.	7.1	62
53	Estimating Drivers of Autochthonous Transmission of Chikungunya Virus in its Invasion of the Americas. PLOS Currents, 2015, 7, .	1.4	62
54	A signature of tree health? Shifts in the microbiome and the ecological drivers of horse chestnut bleeding canker disease. New Phytologist, 2017, 215, 737-746.	7.3	61

#	Article	IF	CITATIONS
55	The geography of measles vaccination in the African Great Lakes region. Nature Communications, 2017, 8, 15585.	12.8	60
56	Six challenges in modelling for public health policy. Epidemics, 2015, 10, 93-96.	3.0	59
57	Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys. ELife, 2021, 10, .	6.0	59
58	Evolution of flowering decisions in a stochastic, density-dependent environment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10466-10470.	7.1	56
59	Measuring the Performance of Vaccination Programs Using Cross-Sectional Surveys: A Likelihood Framework and Retrospective Analysis. PLoS Medicine, 2011, 8, e1001110.	8.4	54
60	Characterizing the impact of spatial clustering of susceptibility for measles elimination. Vaccine, 2019, 37, 732-741.	3.8	54
61	Rubella metapopulation dynamics and importance of spatial coupling to the risk of congenital rubella syndrome in Peru. Journal of the Royal Society Interface, 2011, 8, 369-376.	3.4	52
62	A Global Immunological Observatory to meet a time of pandemics. ELife, 2020, 9, .	6.0	52
63	Transport networks and inequities in vaccination: remoteness shapes measles vaccine coverage and prospects for elimination across Africa. Epidemiology and Infection, 2015, 143, 1457-1466.	2.1	51
64	Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world. ELife, 2021, 10, .	6.0	50
65	Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns. PLoS Computational Biology, 2016, 12, e1004655.	3.2	49
66	Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 2009, 25, 1-12.	1.1	47
67	Maximizing and evaluating the impact of test-trace-isolate programs: A modeling study. PLoS Medicine, 2021, 18, e1003585.	8.4	43
68	Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME Journal, 2022, 16, 1376-1387.	9.8	43
69	The epidemiology of rubella in Mexico: seasonality, stochasticity and regional variation. Epidemiology and Infection, 2011, 139, 1029-1038.	2.1	41
70	The Evolution of Variance Control. Trends in Ecology and Evolution, 2020, 35, 22-33.	8.7	40
71	Five challenges in evolution and infectious diseases. Epidemics, 2015, 10, 40-44.	3.0	38
72	Growth-survival trade-offs and allometries in rosette-forming perennials. Functional Ecology, 2006, 20, 217-225.	3.6	37

#	Article	IF	CITATIONS
73	Environmental uncertainty, autocorrelation and the evolution of survival. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2153-2160.	2.6	37
74	The potential impact of coinfection on antimicrobial chemotherapy and drug resistance. Trends in Microbiology, 2015, 23, 537-544.	7.7	36
75	Disentangling serology to elucidate henipa―and filovirus transmission in Madagascar fruit bats. Journal of Animal Ecology, 2019, 88, 1001-1016.	2.8	36
76	Persistence in Epidemic Metapopulations: Quantifying the Rescue Effects for Measles, Mumps, Rubella and Whooping Cough. PLoS ONE, 2013, 8, e74696.	2.5	35
77	Six challenges in the eradication of infectious diseases. Epidemics, 2015, 10, 97-101.	3.0	35
78	Measles and the canonical path to elimination. Science, 2019, 364, 584-587.	12.6	35
79	Assessing the influence of climate on wintertime SARS-CoV-2 outbreaks. Nature Communications, 2021, 12, 846.	12.8	35
80	Life history in a model system: opening the black box with <i>Arabidopsis thaliana</i> . Ecology Letters, 2009, 12, 593-600.	6.4	33
81	Implications of spatially heterogeneous vaccination coverage for the risk of congenital rubella syndrome in South Africa. Journal of the Royal Society Interface, 2013, 10, 20120756.	3.4	33
82	The effects of host age and spatial location on bacterial community composition in the English Oak tree (<i>Quercus robur</i>). Environmental Microbiology Reports, 2016, 8, 649-658.	2.4	33
83	Structured models of infectious disease: Inference with discrete data. Theoretical Population Biology, 2012, 82, 275-282.	1.1	32
84	A spatial regression model for the disaggregation of areal unit based data to high-resolution grids with application to vaccination coverage mapping. Statistical Methods in Medical Research, 2019, 28, 3226-3241.	1.5	32
85	Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods in Ecology and Evolution, 2015, 6, 1007-1017.	5.2	31
86	Seven challenges in modeling vaccine preventable diseases. Epidemics, 2015, 10, 11-15.	3.0	31
87	Why leveraging sex differences in immune tradeâ€offs may illuminate the evolution of senescence. Functional Ecology, 2020, 34, 129-140.	3.6	31
88	Natural selection for imprecise vertical transmission in host–microbiota systems. Nature Ecology and Evolution, 2022, 6, 77-87.	7.8	31
89	Modelling the first dose of measles vaccination: the role of maternal immunity, demographic factors, and delivery systems. Epidemiology and Infection, 2011, 139, 265-274.	2.1	29
90	Impact on Epidemic Measles of Vaccination Campaigns Triggered by Disease Outbreaks or Serosurveys: A Modeling Study. PLoS Medicine, 2016, 13, e1002144.	8.4	29

#	Article	IF	CITATIONS
91	Schedule and magnitude of reproductive investment under immune trade-offs explains sex differences in immunity. Nature Communications, 2018, 9, 4391.	12.8	29
92	Negative Selection on BRCA1 Susceptibility Alleles Sheds Light on the Population Genetics of Late-Onset Diseases and Aging Theory. PLoS ONE, 2007, 2, e1206.	2.5	29
93	Estimating sources and sinks of malaria parasites in Madagascar. Nature Communications, 2018, 9, 3897.	12.8	28
94	Balancing Evidence and Uncertainty when Considering Rubella Vaccine Introduction. PLoS ONE, 2013, 8, e67639.	2.5	27
95	Epidemic dynamics, interactions and predictability of enteroviruses associated with hand, foot and mouth disease in Japan. Journal of the Royal Society Interface, 2018, 15, 20180507.	3.4	27
96	The duration of travel impacts the spatial dynamics of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22572-22579.	7.1	27
97	Demographic buffering: titrating the effects of birth rate and imperfect immunity on epidemic dynamics. Journal of the Royal Society Interface, 2015, 12, 20141245.	3.4	26
98	Opportunities and challenges of <scp>I</scp> ntegral <scp>P</scp> rojection <scp>M</scp> odels for modelling host–parasite dynamics. Journal of Animal Ecology, 2016, 85, 343-355.	2.8	26
99	Using models to shape measles control and elimination strategies in low- and middle-income countries: A review of recent applications. Vaccine, 2020, 38, 979-992.	3.8	26
100	Overcoming data sparseness and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian model. Canadian Journal of Forest Research, 2009, 39, 1677-1687.	1.7	25
101	Protective microbiomes can limit the evolution of host pathogen defense. Evolution Letters, 2019, 3, 534-543.	3.3	25
102	Bottomâ€up regulation of malaria population dynamics in mice coâ€infected with lungâ€migratory nematodes. Ecology Letters, 2015, 18, 1387-1396.	6.4	24
103	Demographically framing trade-offs between sensitivity and specificity illuminates selection on immunity. Nature Ecology and Evolution, 2017, 1, 1766-1772.	7.8	24
104	Seasonal Population Movements and the Surveillance and Control of Infectious Diseases. Trends in Parasitology, 2017, 33, 10-20.	3.3	24
105	A cline in seed dormancy helps conserve the environment experienced during reproduction across the range of Arabidopsis thaliana. American Journal of Botany, 2016, 103, 47-59.	1.7	23
106	Healthcare utilization, provisioning of post-exposure prophylaxis, and estimation of human rabies burden in Madagascar. Vaccine, 2019, 37, A35-A44.	3.8	23
107	Transient sensitivities of non-indigenous shrub species indicate complicated invasion dynamics. Biological Invasions, 2008, 10, 833-846.	2.4	22
108	Revealing mechanisms underlying variation in malaria virulence: effective propagation and host control of uninfected red blood cell supply. Journal of the Royal Society Interface, 2012, 9, 2804-2813.	3.4	22

#	Article	IF	CITATIONS
109	Why Evolve Reliance on the Microbiome for Timing of Ontogeny?. MBio, 2019, 10, .	4.1	22
110	Avoiding the crowds: the evolution of plastic responses to seasonal cues in a densityâ€dependent world. Journal of Ecology, 2015, 103, 819-828.	4.0	21
111	Elucidating transmission dynamics and host-parasite-vector relationships for rodent-borne Bartonella spp. in Madagascar. Epidemics, 2017, 20, 56-66.	3.0	19
112	Dynamic response of airborne infections to climate change: predictions for varicella. Climatic Change, 2018, 148, 547-560.	3.6	19
113	Comparative dynamics, seasonality in transmission, and predictability of childhood infections in Mexico. Epidemiology and Infection, 2017, 145, 607-625.	2.1	18
114	Seasonal gaps in measles vaccination coverage in Madagascar. Vaccine, 2019, 37, 2511-2519.	3.8	18
115	Predictability in a highly stochastic system: final size of measles epidemics in small populations. Journal of the Royal Society Interface, 2015, 12, 20141125.	3.4	17
116	Demographics, epidemiology and the impact of vaccination campaigns in a measles-free world – Can elimination be maintained?. Vaccine, 2017, 35, 1488-1493.	3.8	17
117	Measles outbreak risk in Pakistan: exploring the potential of combining vaccination coverage and incidence data with novel data-streams to strengthen control. Epidemiology and Infection, 2018, 146, 1575-1583.	2.1	17
118	Seed predators and the evolutionarily stable flowering strategy in the invasive plant, Carduus nutans. Evolutionary Ecology, 2009, 23, 893-906.	1.2	16
119	Challenges in Modelling Infectious Disease Dynamics: Preface. Epidemics, 2015, 10, iii-iv.	3.0	16
120	Hand, Foot, and Mouth Disease in China: Critical Community Size and Spatial Vaccination Strategies. Scientific Reports, 2016, 6, 25248.	3.3	15
121	Population trends for two Malagasy fruit bats. Biological Conservation, 2019, 234, 165-171.	4.1	15
122	Trajectory of individual immunity and vaccination required for SARS-CoV-2 community immunity: a conceptual investigation. Journal of the Royal Society Interface, 2021, 18, 20200683.	3.4	15
123	The importance of the generation interval in investigating dynamics and control of new SARS-CoV-2 variants. Journal of the Royal Society Interface, 2022, 19, .	3.4	15
124	Rubella vaccination: must not be business as usual. Lancet, The, 2012, 380, 217-218.	13.7	14
125	Introduction of rubella-containing-vaccine to Madagascar: implications for roll-out and local elimination. Journal of the Royal Society Interface, 2016, 13, 20151101.	3.4	14
126	Vaccine-driven virulence evolution: consequences of unbalanced reductions in mortality and transmission and implications for pertussis vaccines. Journal of the Royal Society Interface, 2019, 16, 20190642.	3.4	14

#	Article	IF	CITATIONS
127	Disentangling the dynamical underpinnings of differences in SARS-CoV-2 pathology using within-host ecological models. PLoS Pathogens, 2020, 16, e1009105.	4.7	14
128	A general model for the demographic signatures of the transition from pandemic emergence to endemicity. Science Advances, 2021, 7, .	10.3	13
129	Immuno-epidemiology and the predictability of viral evolution. Science, 2022, 376, 1161-1162.	12.6	13
130	Characterizing the dynamics of rubella relative to measles: the role of stochasticity. Journal of the Royal Society Interface, 2013, 10, 20130643.	3.4	12
131	Opportunities and challenges of a World Serum Bank – Authors' reply. Lancet, The, 2017, 389, 252.	13.7	12
132	Rubella vaccination in India: identifying broad consequences of vaccine introduction and key knowledge gaps. Epidemiology and Infection, 2018, 146, 65-77.	2.1	12
133	Perfect counterfactuals for epidemic simulations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180279.	4.0	12
134	A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination. Nature Ecology and Evolution, 2020, 4, 934-939.	7.8	12
135	Challenges in modeling the emergence of novel pathogens. Epidemics, 2021, 37, 100516.	3.0	12
136	How geographic access to care shapes disease burden: The current impact of post-exposure prophylaxis and potential for expanded access to prevent human rabies deaths in Madagascar. PLoS Neglected Tropical Diseases, 2021, 15, e0008821.	3.0	11
137	The limits of SARS-CoV-2 predictability. Nature Ecology and Evolution, 2021, 5, 1052-1054.	7.8	11
138	The evolution of powerful yet perilous immune systems. Trends in Immunology, 2022, 43, 117-131.	6.8	11
139	What happens if density increases? Conservation implications of population influx into refuges. Animal Conservation, 2007, 10, 478-486.	2.9	10
140	Monitoring for outbreak-associated excess mortality in an African city: Detection limits in Antananarivo, Madagascar. International Journal of Infectious Diseases, 2021, 103, 338-342.	3.3	10
141	Challenges and Opportunities in Disease Forecasting in Outbreak Settings: A Case Study of Measles in Lola Prefecture, Guinea. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1489-1497.	1.4	10
142	Enterovirus D68: a test case for the use of immunological surveillance to develop tools to mitigate the pandemic potential of emerging pathogens. Lancet Microbe, The, 2022, 3, e83-e85.	7.3	10
143	Climatological, virological and sociological drivers of current and projected dengue fever outbreak dynamics in Sri Lanka. Journal of the Royal Society Interface, 2020, 17, 20200075.	3.4	8
144	Characterizing human mobility patterns in rural settings of sub-Saharan Africa. ELife, 2021, 10, .	6.0	8

#	Article	IF	CITATIONS
145	Assessing the risk of vaccine-driven virulence evolution in SARS-CoV-2. Royal Society Open Science, 2022, 9, 211021.	2.4	8
146	Optimal Semelparity. PLoS ONE, 2013, 8, e57133.	2.5	7
147	Phylogeography of rubella virus in Asia: Vaccination and demography shape synchronous outbreaks. Epidemics, 2019, 28, 100346.	3.0	7
148	Evolving resistance to pathogens. Science, 2019, 363, 1277-1278.	12.6	7
149	Tensor decomposition for infectious disease incidence data. Methods in Ecology and Evolution, 2020, 11, 1690-1700.	5.2	7
150	Using Serology with Models to Clarify the Trajectory of the SARS-CoV-2 Emerging Outbreak. Trends in Immunology, 2020, 41, 849-851.	6.8	7
151	Why are there so few (or so many) circulating coronaviruses?. Trends in Immunology, 2021, 42, 751-763.	6.8	7
152	Response to Comment on "Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality― Science, 2019, 365, .	12.6	7
153	Study Protocol: A Cross-Sectional Examination of Socio-Demographic and Ecological Determinants of Nutrition and Disease Across Madagascar. Frontiers in Public Health, 2020, 8, 500.	2.7	6
154	Existing human mobility data sources poorly predicted the spatial spread of SARS-CoV-2 in Madagascar. Epidemics, 2022, 38, 100534.	3.0	6
155	Measurement of vaccine-derived immunity: how do we use all the data?. Expert Review of Vaccines, 2012, 11, 747-749.	4.4	5
156	Improving measles incidence inference using age-structured serological data. Epidemiology and Infection, 2018, 146, 1699-1706.	2.1	5
157	Using Serology to Anticipate Measles Post-honeymoon Period Outbreaks. Trends in Microbiology, 2020, 28, 597-600.	7.7	5
158	Fine-scale variation in malaria prevalence across ecological regions in Madagascar: a cross-sectional study. BMC Public Health, 2021, 21, 1018.	2.9	5
159	Invasion Dynamics of Teratogenic Infections in Light of Rubella Control: Implications for Zika Virus. PLOS Currents, 2016, 8, .	1.4	5
160	Long-term trends in seasonality of mortality in urban Madagascar: the role of the epidemiological transition. Global Health Action, 2020, 13, 1717411.	1.9	4
161	Lessons Learned and Paths Forward for Rabies Dog Vaccination in Madagascar: A Case Study of Pilot Vaccination Campaigns in Moramanga District. Tropical Medicine and Infectious Disease, 2021, 6, 48.	2.3	4
162	Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread. PLoS Computational Biology, 2021, 17, e1009127.	3.2	4

#	Article	IF	CITATIONS
163	Challenges in evaluating risks and policy options around endemic establishment or elimination of novel pathogens. Epidemics, 2021, 37, 100507.	3.0	4
164	Impact of health system strengthening on delivery strategies to improve child immunisation coverage and inequalities in rural Madagascar. BMJ Global Health, 2022, 7, e006824.	4.7	4
165	Assessing the Effects of Measles Virus Infections on Childhood Infectious Disease Mortality in Brazil. Journal of Infectious Diseases, 2022, 227, 133-140.	4.0	4
166	Drivers of measles mortality: the historic fatality burden of famine in Bangladesh. Epidemiology and Infection, 2017, 145, 3361-3369.	2.1	3
167	Rubella Vaccine Introduction in the South African Public Vaccination Schedule: Mathematical Modelling for Decision Making. Vaccines, 2020, 8, 383.	4.4	3
168	Structure, space and size: competing drivers of variation in urban and rural measles transmission. Journal of the Royal Society Interface, 2020, 17, 20200010.	3.4	3
169	Cyclic epidemics and extreme outbreaks induced by hydro-climatic variability and memory. Journal of the Royal Society Interface, 2020, 17, 20200521.	3.4	3
170	Building toward useful SARS-CoV-2 models in Africa. Proceedings of the National Academy of Sciences of America, 2021, 118, .	7.1	3
171	Why do some coronaviruses become pandemic threats when others do not?. PLoS Biology, 2022, 20, e3001652.	5.6	3
172	Comparing the age and sex trajectories of SARS-CoV-2 morbidity and mortality with other respiratory pathogens. Royal Society Open Science, 2022, 9, .	2.4	3
173	The evolutionary dynamics of timing of maternal immunity: evaluating the role of ageâ€specific mortality. Journal of Evolutionary Biology, 2015, 28, 493-502.	1.7	2
174	Partial immunity and SARS-CoV-2 mutations—Response. Science, 2021, 372, 354-355.	12.6	2
175	Differential drivers of intraspecific and interspecific competition during malaria–helminth co-infection. Parasitology, 2021, 148, 1030-1039.	1.5	2
176	The Challenge of Achieving Immunity Through Multiple-Dose Vaccines in Madagascar. American Journal of Epidemiology, 2021, 190, 2085-2093.	3.4	2
177	Optimal immune specificity at the intersection of host life history and parasite epidemiology. PLoS Computational Biology, 2021, 17, e1009714.	3.2	2
178	When Worlds Collide: Reconciling Models, data, and Analysis. Israel Journal of Ecology and Evolution, 2009, 55, 227-231.	0.6	1
179	Seroprevalence of pertussis in Madagascar and implications for vaccination. Epidemiology and Infection, 2020, 148, e283.	2.1	1
180	The effects of host age and spatial location on bacterial community composition in the English Oak tree (<i>Quercus robur</i>). Environmental Microbiology Reports, 2016, , .	2.4	1

#	Article	IF	CITATIONS
181	Seasonal determinants of access to care: implications for measles outbreak risk in Madagascar. Lancet, The, 2017, 389, S14.	13.7	1
182	Towards better targeting: lessons from a posthoneymoon measles outbreak in Madagascar, 2018–2019. BMJ Global Health, 2020, 5, e003153.	4.7	1
183	Leveraging serology to titrate immunization program functionality for diphtheria in Madagascar. Epidemiology and Infection, 2022, 150, 1-34.	2.1	1
184	The required size of cluster randomized trials of nonpharmaceutical interventions in epidemic settings. Statistics in Medicine, 2022, , .	1.6	1
185	Disease spread: heating and stirring the global viral soup. Nature, 0, , .	27.8	0