List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/869646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of multiparticle interactions on the aggregation of asphaltenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128026.	4.7	2
2	Modeling adsorption of simple fluids and hydrocarbons on nanoporous carbons. Carbon, 2022, 197, 526-533.	10.3	2
3	Pore size characterization of micro-mesoporous carbons using CO2 adsorption. Carbon, 2021, 173, 842-848.	10.3	25
4	Monte Carlo Simulations of Nanopore Compartmentalization Yield Fingerprint Adsorption Isotherms as a Rationale for Advanced Structure Characterization of Metal–Organic Frameworks. ACS Applied Nano Materials, 2021, 4, 5531-5540.	5.0	4
5	Modeling of the Effects of Metal Complexation on the Morphology and Rheology of Xanthan Gum Polysaccharide Solutions. Macromolecules, 2021, 54, 8675-8692.	4.8	6
6	Deformation of Nanoporous Materials in the Process of Binary Adsorption: Methane Displacement by Carbon Dioxide from Coal. Journal of Physical Chemistry C, 2021, 125, 21310-21316.	3.1	6
7	Suspensions of lyophobic nanoporous particles as smart materials for energy absorption. Journal of Colloid and Interface Science, 2021, 600, 229-242.	9.4	2
8	Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory. Carbon, 2021, 183, 672-684.	10.3	7
9	Effects of metal-polymer complexation on structure and transport properties of metal-substituted polyelectrolyte membranes. Journal of Colloid and Interface Science, 2021, 602, 654-668.	9.4	11
10	Dissipative particle dynamics simulations in colloid and Interface science: a review. Advances in Colloid and Interface Science, 2021, 298, 102545.	14.7	51
11	Interactions of Crosslinked Polyacrylic Acid Polyelectrolyte Gels with Nonionic and Ionic Surfactants. Journal of Physical Chemistry B, 2021, 125, 13817-13828.	2.6	4
12	Permeation dynamics of dimethyl methylphosphonate through polyelectrolyte composite membranes by in-situ Raman spectroscopy. Journal of Membrane Science, 2020, 595, 117462.	8.2	7
13	Reversible aggregation of particles with short oligomeric sidechains at the surface studied with Langevin dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124143.	4.7	4
14	Nanoparticle Flow in Polymer Grafted Channels. Journal of Physical Chemistry C, 2020, 124, 1478-1483.	3.1	2
15	Adsorption-Induced Deformation of Microporous Solids: A New Insight from a Century-Old Theory. Journal of Physical Chemistry C, 2020, 124, 749-755.	3.1	18
16	Adhesion, intake, and release of nanoparticles by lipid bilayers. Journal of Colloid and Interface Science, 2020, 561, 58-70.	9.4	14
17	Modeling Gas–Liquid Interfaces by Dissipative Particle Dynamics: Adsorption and Surface Tension of Cetyl Trimethyl Ammonium Bromide at the Air–Water Interface. Langmuir, 2020, 36, 14686-14698. 	3.5	28
18	Stability of Lipid Coatings on Nanoparticle-Decorated Surfaces. ACS Nano, 2020, 14, 17273-17284.	14.6	8

#	Article	IF	CITATIONS
19	In-situ growth and characterization of metal oxide nanoparticles within block-copolymer polyelectrolyte membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125028.	4.7	1
20	Atomic-scale molecular models of oxidized activated carbon fibre nanoregions: Examining the effects of oxygen functionalities on wet formaldehyde adsorption. Carbon, 2020, 165, 67-81.	10.3	19
21	Pore opening and breathing transitions in metal-organic frameworks: Coupling adsorption and deformation. Journal of Colloid and Interface Science, 2020, 578, 77-88.	9.4	20
22	Structural mechanism of reactivation with steam of pitch-based activated carbon fibers. Journal of Colloid and Interface Science, 2020, 578, 422-430.	9.4	22
23	Coupling Structural and Adsorption Properties of Metal–Organic Frameworks: From Pore Size Distribution to Pore Type Distribution. ACS Applied Materials & Interfaces, 2020, 12, 15595-15605.	8.0	12
24	In Situ Small-Angle Neutron Scattering Investigation of Adsorption-Induced Deformation in Silica with Hierarchical Porosity. Langmuir, 2019, 35, 11590-11600.	3.5	11
25	Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores. Langmuir, 2019, 35, 11291-11298.	3.5	42
26	Mechanical Characterization of Hierarchical Structured Porous Silica by in Situ Dilatometry Measurements during Gas Adsorption. Langmuir, 2019, 35, 2948-2956.	3.5	12
27	Deciphering the Relations between Pore Structure and Adsorption Behavior in Metal–Organic Frameworks: Unexpected Lessons from Argon Adsorption on Copper–Benzene-1,3,5-tricarboxylate. Journal of the American Chemical Society, 2019, 141, 8397-8401.	13.7	30
28	Thermally stable near UV-light transparent and conducting SWCNT/glass flexible films. Carbon, 2019, 152, 7-15.	10.3	5
29	Critical Conditions of Adhesion and Separation of Functionalized Nanoparticles on Polymer Grafted Substrates. Journal of Physical Chemistry C, 2019, 123, 16091-16106.	3.1	5
30	Disordered Mesoporous Zirconium (Hydr)oxides for Decomposition of Dimethyl Chlorophosphate. ACS Applied Materials & Interfaces, 2019, 11, 17931-17939.	8.0	11
31	Phonons in deformable microporous crystalline solids. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 513-527.	0.8	7
32	Polyoxometalate hybrid catalyst for detection and photodecomposition of mustard gas surrogate vapors. Applied Surface Science, 2019, 467-468, 428-438.	6.1	25
33	Super-sieving effect in phenol adsorption from aqueous solutions on nanoporous carbon beads. Carbon, 2018, 135, 12-20.	10.3	34
34	Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes. Journal of Chemical Physics, 2018, 148, 024108.	3.0	52
35	Adhesion and Separation of Nanoparticles on Polymer-Grafted Porous Substrates. Langmuir, 2018, 34, 1481-1496.	3.5	10
36	Phenol Molecular Sheets Woven by Water Cavities in Hydrophobic Slit Nanospaces. Langmuir, 2018, 34, 15150-15159.	3.5	1

#	Article	IF	CITATIONS
37	Elucidating the Effects of Metal Complexation on Morphological and Rheological Properties of Polymer Solutions by a Dissipative Particle Dynamics Model. Macromolecules, 2018, 51, 4987-5000.	4.8	21
38	Nanoparticle-Engendered Rupture of Lipid Membranes. Journal of Physical Chemistry Letters, 2018, 9, 4872-4877.	4.6	12
39	Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory. Langmuir, 2017, 33, 1769-1779.	3.5	52
40	Adsorption-Induced Deformation of Hierarchically Structured Mesoporous Silica—Effect of Pore-Level Anisotropy. Langmuir, 2017, 33, 5592-5602.	3.5	47
41	Adhesion of Phospholipid Bilayers to Hydroxylated Silica: Existence of Nanometer-Thick Water Interlayers. Langmuir, 2017, 33, 13148-13156.	3.5	14
42	Molecular simulation aided nanoporous carbon design for highly efficient low-concentrated formaldehyde capture. Carbon, 2017, 124, 152-160.	10.3	30
43	Nanoporosity Change on Elastic Relaxation of Partially Folded Graphene Monoliths. Langmuir, 2017, 33, 14565-14570.	3.5	9
44	Reconciliation of Gibbs Excess Adsorption Thermodynamics and Poromechanics of Nanoporous Materials. , 2017, , .		3
45	Morphologically disordered pore model for characterization of micro-mesoporous carbons. Carbon, 2017, 111, 358-370.	10.3	25
46	In Situ Growth and Characterization of Metal Oxide Nanoparticles within Polyelectrolyte Membranes. Angewandte Chemie, 2016, 128, 11694-11699.	2.0	2
47	Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane. Journal of Chemical Physics, 2016, 144, 014902.	3.0	41
48	Parametrization of Chain Molecules in Dissipative Particle Dynamics. Journal of Physical Chemistry B, 2016, 120, 4980-4991.	2.6	37
49	Characterization of porous materials: From angstroms to millimeters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 496, 1-2.	4.7	0
50	In Situ Growth and Characterization of Metal Oxide Nanoparticles within Polyelectrolyte Membranes. Angewandte Chemie - International Edition, 2016, 55, 11522-11527.	13.8	14
51	Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography. Journal of Colloid and Interface Science, 2016, 481, 181-193.	9.4	11
52	Deformation of Microporous Carbons during N ₂ , Ar, and CO ₂ Adsorption: Insight from the Density Functional Theory. Langmuir, 2016, 32, 8265-8274.	3.5	49
53	Critical conditions of polymer adsorption and chromatography on non-porous substrates. Journal of Colloid and Interface Science, 2016, 474, 25-33.	9.4	11
54	Using in-situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons. Carbon, 2016, 103, 263-272.	10.3	36

#	Article	IF	CITATIONS
55	Adsorption deformation of microporous composites. Dalton Transactions, 2016, 45, 4136-4140.	3.3	14
56	Adhesion of nanoparticles to polymer brushes studied with the ghost tweezers method. Journal of Chemical Physics, 2015, 142, 034705.	3.0	22
57	Shock Wave Induced Collapse of Arrays of Nanobubbles Located Next to a Lipid Membrane: Coarse-Grained Computer Simulations. Journal of Physical Chemistry B, 2015, 119, 8879-8889.	2.6	28
58	Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation. Journal of Chemical Theory and Computation, 2015, 11, 4395-4403.	5.3	33
59	Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations. Journal of Physical Chemistry B, 2015, 119, 11673-11683.	2.6	78
60	Deformation of Microporous Carbon during Adsorption of Nitrogen, Argon, Carbon Dioxide, and Water Studied by <i>in Situ</i> Dilatometry. Langmuir, 2015, 31, 12512-12519.	3.5	42
61	Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87, 1051-1069.	1.9	12,159
62	Extra adsorption and adsorbate superlattice formation in metal-organic frameworks. Nature, 2015, 527, 503-507.	27.8	212
63	Carbon Nanotube Composites as Multifunctional Substrates for In Situ Actuation of Differentiation of Human Neural Stem Cells. Advanced Healthcare Materials, 2014, 3, 1745-1752.	7.6	34
64	Shock wave interaction with a phospholipid membrane: Coarse-grained computer simulations. Journal of Chemical Physics, 2014, 140, 054906.	3.0	40
65	Morphological Transformations in Polymer Brushes in Binary Mixtures: DPD Study. Langmuir, 2014, 30, 12932-12940.	3.5	29
66	Local Pressure Changes in Lipid Bilayers Due to Adsorption of Melittin and Magainin-h2 Antimicrobial Peptides: Results from Computer Simulations. Journal of Physical Chemistry B, 2014, 118, 12673-12679.	2.6	11
67	Bioactive agarose carbonâ€nanotube composites are capable of manipulating brain–implant interface. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
68	Comment on "Volume shrinkage of a metal–organic framework host induced by the dispersive attraction of guest gas molecules― Physical Chemistry Chemical Physics, 2014, 16, 4394.	2.8	8
69	Self-Assembly in Nafion Membranes upon Hydration: Water Mobility and Adsorption Isotherms. Journal of Physical Chemistry B, 2014, 118, 11353-11364.	2.6	72
70	Carbon Molecular Sieves: Reconstruction of Atomistic Structural Models with Experimental Constraints. Journal of Physical Chemistry C, 2014, 118, 12996-13007.	3.1	21
71	Oxygen Incorporation in Rubrene Single Crystals. Scientific Reports, 2014, 4, 4753.	3.3	34
72	Adsorption induced transitions in soft porous crystals: An osmotic potential approach to multistability and intermediate structures. Journal of Chemical Physics, 2013, 138, 174706.	3.0	74

#	Article	IF	CITATIONS
73	Adsorption Deformation and Structural Transitions in Metal–Organic Frameworks: From the Unit Cell to the Crystal. Journal of Physical Chemistry Letters, 2013, 4, 3198-3205.	4.6	148
74	Calculations of Critical Micelle Concentration by Dissipative Particle Dynamics Simulations: The Role of Chain Rigidity. Journal of Physical Chemistry B, 2013, 117, 10304-10310.	2.6	90
75	Prediction of the Critical Micelle Concentration of Nonionic Surfactants by Dissipative Particle Dynamics Simulations. Journal of Physical Chemistry Letters, 2013, 4, 797-802.	4.6	138
76	Interactions of Sarin with Polyelectrolyte Membranes: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2013, 117, 365-372.	2.6	8
77	Coarse-Grained Simulations of Antimicrobial Action of Melittin and Magainin-2 on Phospholipid Bilayers. Biophysical Journal, 2013, 104, 601a-602a.	0.5	Ο
78	Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 3-32.	4.7	915
79	Experimental and theoretical studies of scanning adsorption–desorption isotherms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 76-89.	4.7	80
80	Melittin Creates Transient Pores in a Lipid Bilayer: Results from Computer Simulations. Journal of Physical Chemistry B, 2013, 117, 5031-5042.	2.6	58
81	Screening of carbonaceous nanoporous materials for capture of nerve agents. Physical Chemistry Chemical Physics, 2013, 15, 291-298.	2.8	25
82	Adsorption of n-Pentane on Mesoporous Silica and Adsorbent Deformation. Langmuir, 2013, 29, 8601-8608.	3.5	71
83	Polymer Translocation through a Nanopore: DPD Study. Journal of Physical Chemistry B, 2013, 117, 3648-3658.	2.6	25
84	Communication: Thermodynamic analysis of critical conditions of polymer adsorption. Journal of Chemical Physics, 2013, 139, 201101.	3.0	4
85	Adsorption-Induced Breathing Transitions in Metal-Organic Frameworks. , 2013, , .		0
86	Critical conditions of polymer chromatography: An insight from SCFT modeling. Journal of Chemical Physics, 2013, 138, 244903.	3.0	10
87	Found in Translation: from Adsorption Thermodynamics to Poromechanics of Nanostructured Solids. , 2013, , .		0
88	Translocation dynamics of freely jointed Lennard-Jones chains into adsorbing pores. Journal of Chemical Physics, 2012, 137, 144903.	3.0	18
89	Understanding adsorption-induced structural transitions in metal-organic frameworks: From the unit cell to the crystal. Journal of Chemical Physics, 2012, 137, 184702.	3.0	35
90	Adsorption-driven translocation of polymer chain into nanopores. Journal of Chemical Physics, 2012, 136, 214901.	3.0	22

#	Article	IF	CITATIONS
91	Characterization of the Pore Structure of Three-Dimensionally Ordered Mesoporous Carbons Using High Resolution Gas Sorption. Langmuir, 2012, 28, 12647-12654.	3.5	85
92	Capillary Condensation Hysteresis in Overlapping Spherical Pores:A Monte Carlo Simulation Study. Langmuir, 2012, 28, 12100-12107.	3.5	26
93	Advanced Physical Adsorption Characterization of Nanoporous Carbons. , 2012, , 107-145.		38
94	DPD Simulation of Protein Conformations: From α-Helices to β-Structures. Journal of Physical Chemistry Letters, 2012, 3, 3081-3087.	4.6	64
95	Monte Carlo Simulation of Cavitation in Pores with Nonwetting Defects. Langmuir, 2012, 28, 4702-4711.	3.5	22
96	Difference between Magainin-2 and Melittin Assemblies in Phosphatidylcholine Bilayers: Results from Coarse-Grained Simulations. Journal of Physical Chemistry B, 2012, 116, 3021-3030.	2.6	81
97	A Standâ€Alone Mesoporous Crystal Structure Model from in situ Xâ€ray Diffraction: Nitrogen Adsorption on 3 D Cagelike Mesoporous Silica SBAâ€16. Chemistry - A European Journal, 2012, 18, 10300-10311.	3.3	20
98	Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon, 2012, 50, 1583-1590.	10.3	360
99	The characterization of macroporous solids: An overview of the methodology. Microporous and Mesoporous Materials, 2012, 154, 2-6.	4.4	76
100	Interactions of Phosphororganic Agents with Water and Components of Polyelectrolyte Membranes. Journal of Physical Chemistry B, 2011, 115, 13617-13623.	2.6	23
101	Molecular Modeling of Organophosphorous Agents and Their Aqueous Solutions. Journal of Physical Chemistry A, 2011, 115, 5201-5209.	2.5	22
102	Effects of CO ₂ adsorption on coal deformation during geological sequestration. Journal of Geophysical Research, 2011, 116, .	3.3	41
103	Structural Transitions in MIL-53 (Cr): View from Outside and Inside. Langmuir, 2011, 27, 4734-4741.	3.5	143
104	Adsorption-Induced Deformation of Mesoporous Solids: Macroscopic Approach and Density Functional Theory. Langmuir, 2011, 27, 6926-6931.	3.5	85
105	Mechanism of Breathing Transitions in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2011, 2, 2033-2037.	4.6	74
106	Monte Carlo simulation of polymer adsorption. Adsorption, 2011, 17, 265-271.	3.0	8
107	Solvation forces between molecularly rough surfaces. Journal of Colloid and Interface Science, 2011, 362, 382-388.	9.4	23
108	Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Advanced Functional Materials, 2011, 21, 2624-2632.	14.9	95

#	Article	IF	CITATIONS
109	Absorption and transport properties of ultra-fine cellulose webs. Journal of Colloid and Interface Science, 2011, 353, 290-293.	9.4	35
110	Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC) Tj ETQq0 0 0) rgBT /Ove	erlock 10 Tf 5
	Comparative applysis of assential collective dynamics and NMP derived flexibility profiles in		

111	evolutionarily diverse prion proteins. Prion, 2011, 5, 188-200.	1.8	22
112	Calculation of chemical potentials of chain molecules by the incremental gauge cell method. Journal of Chemical Physics, 2011, 135, 214109.	3.0	16
113	Self-assembly in block polyelectrolytes. Journal of Chemical Physics, 2011, 134, 054104.	3.0	25
114	Adsorption-Induced Deformation of Mesoporous Solids. Langmuir, 2010, 26, 13021-13027.	3.5	141
115	Stress-Based Model for the Breathing of Metalâ~'Organic Frameworks. Journal of Physical Chemistry Letters, 2010, 1, 445-449.	4.6	209
116	Effect of Mixing on the Pore Structure of Alumina Extrudates. Particle and Particle Systems Characterization, 2010, 27, 42-47.	2.3	5
117	Deformation of Coal Induced by Methane Adsorption at Geological Conditions. Energy & Fuels, 2010, 24, 5955-5964.	5.1	82
118	The Behavior of Flexible MIL-53(Al) upon CH ₄ and CO ₂ Adsorption. Journal of Physical Chemistry C, 2010, 114, 22237-22244.	3.1	197
119	Insight into the Effect of Dealumination on Mordenite Using Experimentally Validated Simulations. Journal of Physical Chemistry C, 2010, 114, 2056-2065.	3.1	41
120	Cavitation in Metastable Liquid Nitrogen Confined to Nanoscale Pores. Langmuir, 2010, 26, 10147-10157.	3.5	180
121	Multicomponent gauge cell method. Journal of Chemical Physics, 2009, 130, 224103.	3.0	17
122	Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon, 2009, 47, 1617-1628.	10.3	705
123	Density Functional Theory of in Situ Synchrotron Powder X-ray Diffraction on Mesoporous Crystals: Argon Adsorption on MCM-41. Journal of Physical Chemistry C, 2009, 113, 791-794.	3.1	41
124	Evidence of Large Voids in Pureâ€Silicaâ€Zeolite Lowâ€ <i>k</i> Dielectrics Synthesized by Spinâ€on of Nanoparticle Suspensions. Advanced Materials, 2008, 20, 3110-3116.	21.0	34
125	Adsorption-Induced Deformation of Microporous Carbons: Pore Size Distribution Effect. Langmuir, 2008, 24, 6603-6608.	3.5	129
126	Argon Adsorption on MCM-41 Mesoporous Crystal Studied by In Situ Synchrotron Powder X-ray Diffraction. Journal of Physical Chemistry C, 2008, 112, 10803-10813.	3.1	54

#	Article	IF	CITATIONS
127	Molecular Dynamics Simulation of Nanoscale Distribution and Mobility of Water and Dimethylmethylphosphonate in Sulfonated Polystyrene. Journal of Physical Chemistry B, 2008, 112, 14905-14910.	2.6	22
128	Carbon Nanotube Fibers Are Compatible With Mammalian Cells and Neurons. IEEE Transactions on Nanobioscience, 2008, 7, 11-14.	3.3	50
129	Specifics of solvation of sulfonated polyelectrolytes in water, dimethylmethylphosphonate, and their mixture: A molecular simulation study. Journal of Chemical Physics, 2008, 128, 164902.	3.0	37
130	Density functional theory model of adsorption on amorphous and microporous solids. Studies in Surface Science and Catalysis, 2007, 160, 9-16.	1.5	10
131	Interaction of water vapour at 298K with Al-MCM-41 materials synthesised at room temperature. Microporous and Mesoporous Materials, 2007, 103, 82-93.	4.4	27
132	Positive curvature effects and interparticle capillary condensation during nitrogen adsorption in particulate porous materials. Journal of Colloid and Interface Science, 2007, 314, 415-421.	9.4	11
133	Phase Transitions and Criticality in Small Systems:Â Vaporâ^'Liquid Transition in Nanoscale Spherical Cavities. Journal of Physical Chemistry B, 2006, 110, 9403-9412.	2.6	66
134	Ribbon-to-Fiber Transformation in the Process of Spinning of Carbon-Nanotube Dispersion. Physical Review Letters, 2006, 97, 188303.	7.8	16
135	Density Functional Theory Model of Adsorption Deformation. Langmuir, 2006, 22, 10864-10868.	3.5	140
136	Characterization of Micro-Mesoporous Materials from Nitrogen and Toluene Adsorption:  Experiment and Modeling. Langmuir, 2006, 22, 513-516.	3.5	79
137	Using Nitrogen and Carbon Dioxide Molecules To Probe Arsenic(V) Bioaccessibility in Soils. Environmental Science & Technology, 2006, 40, 7732-7738.	10.0	4
138	Density Functional Theory Model of Adsorption on Amorphous and Microporous Silica Materials. Langmuir, 2006, 22, 11171-11179.	3.5	307
139	Adsorption Hysteresis of Nitrogen and Argon in Pore Networks and Characterization of Novel Micro- and Mesoporous Silicas. Langmuir, 2006, 22, 756-764.	3.5	505
140	Diffusion-Controlled Hysteresis. Adsorption, 2005, 11, 265-270.	3.0	29
141	Characterization of Worm-Like Micro- and Mesoporous Silicas by Small-Angle Scattering and High-Resolution Adsorption Porosimetry. Adsorption, 2005, 11, 653-655.	3.0	35
142	Calculation of Pore Size Distributions in Low-k Films. AIP Conference Proceedings, 2005, , .	0.4	0
143	The birth of a bubble: A molecular simulation study. Journal of Chemical Physics, 2005, 122, 054707.	3.0	58
144	Nitrogen and Carbon Dioxide Adsorption by Soils. Environmental Science & amp; Technology, 2005, 39, 4990-4995.	10.0	44

#	Article	IF	CITATIONS
145	Vapor-to-Droplet Transition in a Lennard-Jones Fluid:Â Simulation Study of Nucleation Barriers Using the Ghost Field Method. Journal of Physical Chemistry B, 2005, 109, 5962-5976.	2.6	26
146	Monte Carlo simulation study of droplet nucleation. Journal of Chemical Physics, 2005, 122, 174508.	3.0	33
147	A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems. Journal of Chemical Physics, 2005, 122, 234108.	3.0	43
148	Simultaneous Transport of Water and Organic Molecules through Polyelectrolyte Membranes. Journal of Physical Chemistry B, 2004, 108, 8900-8909.	2.6	67
149	Molecular Model of Dimethylmethylphosphonate and Its Interactions with Water. Journal of Physical Chemistry A, 2004, 108, 1435-1439.	2.5	30
150	Spontaneous absorption of viscous and viscoelastic fluids by capillaries and porous substrates. Journal of Colloid and Interface Science, 2003, 262, 16-24.	9.4	20
151	Modeling of spontaneous penetration of viscoelastic fluids and biofluids into capillaries. Journal of Colloid and Interface Science, 2003, 262, 253-262.	9.4	31
152	Sorption Hysteresis of Benzene in Charcoal Particles. Environmental Science & Technology, 2003, 37, 409-417.	10.0	305
153	"Humic Coverage Index―as a Determining Factor Governing Strain-Specific Hydrocarbon Availability to Contaminant-Degrading Bacteria in Soils. Environmental Science & Technology, 2003, 37, 5168-5174.	10.0	18
154	Nanopore Structure and Sorption Properties of Cuâ^'BTC Metalâ^'Organic Framework. Nano Letters, 2003, 3, 713-718.	9.1	333
155	Monte Carlo Simulation Test of Pore Blocking Effects. Langmuir, 2003, 19, 3240-3247.	3.5	132
156	Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. Journal of Physics Condensed Matter, 2003, 15, 347-365.	1.8	170
157	Hierarchical Pore Structure and Wetting Properties of Single-Wall Carbon Nanotube Fibers. Nano Letters, 2003, 3, 419-423.	9.1	70
158	Specifics of freezing of Lennard-Jones fluid confined to molecularly thin layers. Journal of Chemical Physics, 2003, 118, 7585.	3.0	47
159	Nucleation of liquid bridges and bubbles in nanoscale capillaries. Journal of Chemical Physics, 2003, 119, 9755-9764.	3.0	87
160	Meniscus motion in a prewetted capillary. Physics of Fluids, 2003, 15, 3134.	4.0	17
161	Density Functional Theory of Adsorption in Spherical Cavities and Pore Size Characterization of Templated Nanoporous Silicas with Cubic and Three-Dimensional Hexagonal Structures. Langmuir, 2002, 18, 1550-1560.	3.5	493
162	A New Templated Ordered Structure with Combined Micro- and Mesopores and Internal Silica Nanocapsules. Journal of Physical Chemistry B, 2002, 106, 5873-5877.	2.6	286

#	Article	IF	CITATIONS
163	Inside the hysteresis loop: Multiplicity of internal states in confined fluids. Physical Review E, 2002, 65, 031505.	2.1	72
164	Capillary condensation as a morphological transition. Advances in Colloid and Interface Science, 2002, 96, 143-167.	14.7	49
165	Experimental Confirmation of Different Mechanisms of Evaporation from Ink-Bottle Type Pores: Equilibrium, Pore Blocking, and Cavitation. Langmuir, 2002, 18, 9830-9837.	3.5	456
166	Density functional theories and molecular simulations of adsorption and phase transitions in nanopores. Physical Review E, 2001, 64, 011602.	2.1	275
167	Molecular Dynamics Simulation of Microstructure and Molecular Mobilities in Swollen Nafion Membranes. Journal of Physical Chemistry B, 2001, 105, 9586-9594.	2.6	194
168	Studies of Liquidâ^'Vapor Equilibria, Criticality, and Spinodal Transitions in Nanopores by the Gauge Cell Monte Carlo Simulation Method. Journal of Physical Chemistry B, 2001, 105, 7009-7020.	2.6	124
169	Characterization of Micro- and Mesoporosity in SBA-15 Materials from Adsorption Data by the NLDFT Method. Journal of Physical Chemistry B, 2001, 105, 6817-6823.	2.6	486
170	Molecular Dynamics Simulation of Nafion Oligomer Solvation in Equimolar Methanolâ~'Water Mixture. Journal of Physical Chemistry B, 2001, 105, 7830-7834.	2.6	135
171	Capillary condensation in MMS and pore structure characterization. Microporous and Mesoporous Materials, 2001, 44-45, 697-707.	4.4	368
172	Adsorption of nitrogen, neopentane, n-hexane, benzene and methanol for the evaluation of pore sizes in silica grades of MCM-41. Microporous and Mesoporous Materials, 2001, 47, 323-337.	4.4	108
173	Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 11-21.	4.7	362
174	Spontaneous Penetration of Liquids into Capillaries and Porous Membranes Revisited. Journal of Colloid and Interface Science, 2001, 235, 101-113.	9.4	71
175	The Wicking Kinetics of Liquid Droplets into Yarns. Textile Reseach Journal, 2001, 71, 862-869.	2.2	19
176	Statistical geometry of cavities in a metastable confined fluid. Physical Review E, 2000, 62, 538-544.	2.1	36
177	Relations between Structural Parameters and Adsorption Characterization of Templated Nanoporous Materials with Cubic Symmetry. Langmuir, 2000, 16, 2419-2423.	3.5	119
178	Gauge cell method for simulation studies of phase transitions in confined systems. Physical Review E, 2000, 62, 4611-4622.	2.1	140
179	Adsorption hysteresis in nanopores. Physical Review E, 2000, 62, R1493-R1496.	2.1	227
180	Classification of Equilibrium Configurations of Wetting Films on Planar Substrates. Langmuir, 2000, 16, 5526-5529.	3.5	12

#	Article	IF	CITATIONS
181	Density Functional Theory of Adsorption Hysteresis and Nanopore Characterization. Studies in Surface Science and Catalysis, 2000, , 51-60.	1.5	24
182	Characterization of MCM-48 Materials. Langmuir, 2000, 16, 4648-4654.	3.5	271
183	Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2Adsorption Isothermsâ€. Langmuir, 2000, 16, 2311-2320.	3.5	628
184	Molecular Simulation Study of Nafion Membrane Solvation in Water and Methanol. Journal of Physical Chemistry B, 2000, 104, 4471-4478.	2.6	183
185	Calculations of pore size distributions in nanoporous materials from adsorption and desorption isotherms. Studies in Surface Science and Catalysis, 2000, 129, 597-606.	1.5	45
186	Foam in porous media: thermodynamic and hydrodynamic peculiarities. Advances in Colloid and Interface Science, 1999, 82, 127-187.	14.7	74
187	Hydrodynamic Instability of Liquid Films on Moving Fibers. Journal of Colloid and Interface Science, 1999, 215, 381-396.	9.4	14
188	Thermodynamic equilibrium and stability of liquid films and droplets on fibers. Journal of Adhesion Science and Technology, 1999, 13, 1137-1154.	2.6	78
189	Physical mechanisms of foam flow in porous media. Rheology Series, 1999, 8, 1151-1182.	0.1	3
190	Molecular Level Models for CO2 Sorption in Nanopores. Langmuir, 1999, 15, 8736-8742.	3.5	270
191	Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. Advances in Colloid and Interface Science, 1998, 76-77, 203-226.	14.7	343
192	Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption. Journal of Colloid and Interface Science, 1998, 207, 159-169.	9.4	321
193	Adsorption characterization of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 1998, 117, 77-84.	1.5	14
194	Calibration of Pore Volume in Adsorption Experiments and Theoretical Models. Langmuir, 1997, 13, 5148-5160.	3.5	154
195	Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption. Journal of Physical Chemistry B, 1997, 101, 3671-3679.	2.6	384
196	Extended Characterization of Combustion-Generated Aggregates: Self-Affinity and Lacunarities. Journal of Colloid and Interface Science, 1996, 180, 590-597.	9.4	23
197	Characterization of Rough Surfaces. Kluwer International Series in Engineering and Computer Science, 1996, , 659-666.	0.2	5
198	Variations from the Plateau law in foams. Physical Review E, 1995, 51, 788-791.	2.1	12

#	Article	IF	CITATIONS
199	Electrophysical properties of metal–solid-electrolyte composites. Physical Review B, 1995, 52, 927-938.	3.2	13
200	Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41. Langmuir, 1995, 11, 4765-4772.	3.5	447
201	The Method of Indeterminate Lagrange Multipliers in Nonlocal Density Functional Theory. Langmuir, 1995, 11, 4183-4184.	3.5	56
202	Characterization of self-affinity in the global regime. Physical Review B, 1994, 50, 15435-15438.	3.2	11
203	Potential Theory of Adsorption and Adsorbate Compressibility. Journal of Colloid and Interface Science, 1994, 165, 91-96.	9.4	12
204	Berechnung der Fraktaldimension einiger porĶser Feststoffe aus der Stickstoff-Adsorptionsisotherme. Zeitschrift Fur Physikalische Chemie, 1994, 187, 265-280.	2.8	16
205	Impact of the adsorbate compressibility on the calculation of the micropore volume. Carbon, 1993, 31, 1015-1018.	10.3	15
206	Method of Discrimination of Surface Fractality. Journal of Colloid and Interface Science, 1993, 158, 412-419.	9.4	75
207	A model for polybutadiene coatings on porous silica. Chromatographia, 1993, 35, 403-409.	1.3	34
208	Fractal analysis of the distribution of high-viscosity fluids in porous supports. The Journal of Physical Chemistry, 1993, 97, 6011-6015.	2.9	47
209	A new approach to the determination of the surface fractal dimension of porous solids. Physica A: Statistical Mechanics and Its Applications, 1992, 191, 258-262.	2.6	137
210	Percolation Theory of Capillary Hysteresis Phenomena and Its Application for Characterization of Porous Solids. Studies in Surface Science and Catalysis, 1991, 62, 67-74.	1.5	39
211	Calculating Surface Fractal Dimensions of Adsorbents. Adsorption Science and Technology, 1990, 7, 210-219.	3.2	102
212	Analysis of the drying stage in the technology of supported catalysts. Reaction Kinetics and Catalysis Letters, 1976, 5, 67-72.	0.6	12
213	Calculation of multiple many-center electron scattering by molecules in the Glauber approximation. Journal of Structural Chemistry, 1974, 15, 325-331.	1.0	1