Xiaoyu Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8696406/publications.pdf Version: 2024-02-01

Χιλονιι ΥλΝ

#	Article	IF	CITATIONS
1	A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development. Renewable and Sustainable Energy Reviews, 2022, 159, 112182.	16.4	14
2	Comprehensive analysis of electrical-optical performance and application potential for 3D concentrating photovoltaic window. Renewable Energy, 2022, 189, 369-382.	8.9	9
3	Environmental performance of a hybrid rainwater harvesting and greywater reuse system: A case study on a high water consumption household in Colombia. Journal of Cleaner Production, 2022, 345, 131125.	9.3	15
4	Going beyond waste reduction: Exploring tools and methods for circular economy adoption in small-medium enterprises. Resources, Conservation and Recycling, 2022, 182, 106345.	10.8	16
5	Combined carbon and health taxes outperform single-purpose information or fiscal measures in designing sustainable food policies. Nature Food, 2022, 3, 331-340.	14.0	9
6	Preparation and control mechanism of nano-phase change emulsion with high thermal conductivity and low supercooling for thermal energy storage. Energy Reports, 2022, 8, 8301-8311.	5.1	8
7	Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland. Energy Policy, 2021, 149, 112027.	8.8	15
8	Sustainable energy planning for remote islands and the waste legacy from renewable energy infrastructure deployment. Journal of Cleaner Production, 2021, 307, 127198.	9.3	11
9	Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China's New Energy Industry. Energies, 2021, 14, 4151.	3.1	5
10	Switch on-switch off small-scale mining: Environmental performance in a life cycle perspective. Journal of Cleaner Production, 2021, 312, 127647.	9.3	10
11	Towards sustainable extraction of technology materials through integrated approaches. Nature Reviews Earth & Environment, 2021, 2, 665-679.	29.7	46
12	Renewable energy can make small-scale mining in Europe more feasible. Resources, Conservation and Recycling, 2021, 172, 105674.	10.8	10
13	Investigations of double layer phase change walls with expanded graphite on the temperature and energy consumption. Energy Reports, 2021, 7, 9023-9034.	5.1	5
14	Dietary shifts can reduce premature deaths related to particulate matter pollution in China. Nature Food, 2021, 2, 997-1004.	14.0	19
15	Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity. Renewable Energy, 2020, 151, 542-550.	8.9	45
16	Detecting and Understanding Synergies and Co-Benefits of Low Carbon Development in the Electric Power Industry in China. Sustainability, 2020, 12, 297.	3.2	8
17	Agave: A promising feedstock for biofuels in the water-energy-food-environment (WEFE) nexus. Journal of Cleaner Production, 2020, 261, 121283.	9.3	26
18	Daily Global Solar Radiation in China Estimated From Highâ€Density Meteorological Observations: A Random Forest Model Framework. Earth and Space Science, 2020, 7, e2019EA001058.	2.6	32

Χιάογυ Υάν

#	Article	IF	CITATIONS
19	Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage. Applied Energy, 2019, 253, 113472.	10.1	44
20	Mineral processing simulation based-environmental life cycle assessment for rare earth project development: A case study on the Songwe Hill project. Journal of Environmental Management, 2019, 249, 109353.	7.8	20
21	Infrastructure-Integrated Photovoltaic (IIPV): a boost to solar energy's green credentials?. Energy Procedia, 2019, 158, 3314-3318.	1.8	5
22	Liquid biofuels: not a long-term transport solution. Energy Procedia, 2019, 158, 3265-3270.	1.8	8
23	Common characteristics of feedstock stage in life cycle assessments of agricultural residue-based biofuels. Fuel, 2019, 253, 1256-1263.	6.4	24
24	Temporally explicit life cycle assessment as an environmental performance decision making tool in rare earth project development. Minerals Engineering, 2019, 135, 64-73.	4.3	22
25	Challenges and research needs in life cycle analysis of building-integrated photovoltaic. IOP Conference Series: Materials Science and Engineering, 2019, 556, 012053.	0.6	0
26	Applying and advancing the economic resource scarcity potential (ESP) method for rare earth elements. Resources Policy, 2019, 62, 472-481.	9.6	26
27	Scaling the nexus: Towards integrated frameworks for analysing water, energy and food. Geographical Journal, 2019, 185, 419-431.	3.1	55
28	Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resources, Conservation and Recycling, 2018, 133, 320-330.	10.8	97
29	Development and application of a life cycle greenhouse gas emission analysis model for mobile air conditioning systems. Applied Energy, 2018, 221, 161-179.	10.1	10
30	Development and application of China provincial road transport energy demand and GHG emissions analysis model. Applied Energy, 2018, 222, 313-328.	10.1	136
31	Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model. Chemical Engineering Research and Design, 2018, 131, 699-708.	5.6	64
32	Experience of producing natural gas from corn straw in China. Resources, Conservation and Recycling, 2018, 135, 216-224.	10.8	51
33	Performance assessment and life cycle analysis of potable water production from harvested rainwater by a decentralized system. Journal of Cleaner Production, 2018, 172, 2167-2173.	9.3	36
34	Effects of fuel properties on combustion and emissions of a direct injection diesel engine fueled with n-butanol-diesel blends. Journal of Renewable and Sustainable Energy, 2017, 9, 013105.	2.0	3
35	Life cycle environmental impacts of cornstalk briquette fuel in China. Applied Energy, 2017, 192, 83-94.	10.1	52
36	Comparison of the Physical and Chemical Properties, Performance, and Emissions of Ethyl Levulinate–Biodiesel–Diesel and <i>n</i> -Butanol–Biodiesel–Diesel Blends. Energy & Fuels, 2017, 3 5055-5062.	1,5.1	16

Χιάογυ Υάν

#	Article	IF	CITATIONS
37	Response to â€~Assessing the energy requirements and global warming potential of the production of rare earth elements'. Journal of Cleaner Production, 2017, 162, 791-794.	9.3	6
38	Introducing a localised spatio-temporal LCI method with wheat production as exploratory case study. Journal of Cleaner Production, 2017, 140, 492-501.	9.3	25
39	Introduction of a spatiotemporal Life Cycle Inventory method using a wind energy example. Energy Procedia, 2017, 142, 3035-3040.	1.8	8
40	Electric Vehicle Market Penetration and Impacts on Energy Consumption and CO2 Emission in the Future: Beijing Case. Energies, 2017, 10, 228.	3.1	50
41	Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate. Applied Energy, 2016, 183, 170-181.	10.1	22
42	Optimal policy design for photovoltaic power industry with positive externality in China. Resources, Conservation and Recycling, 2016, 115, 22-30.	10.8	7
43	Performance and emission characteristics of a diesel engine running on optimized ethyl levulinate–biodiesel–diesel blends. Energy, 2016, 95, 29-40.	8.8	48
44	Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk. Energy, 2014, 64, 557-566.	8.8	85
45	Response to Comment on "Effects of Ethanol on Vehicle Energy Efficiency and Implications on Ethanol Life-Cycle Greenhouse Gas Analysis― Environmental Science & Technology, 2014, 48, 9953-9954.	10.0	0
46	Effects of Ethanol on Vehicle Energy Efficiency and Implications on Ethanol Life-Cycle Greenhouse Gas Analysis. Environmental Science & Technology, 2013, 47, 5535-5544.	10.0	41
47	Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions. Energies, 2013, 6, 4897-4923.	3.1	25
48	Quantifying the uncertainties in life cycle greenhouse gas emissions for UK wheat ethanol. Environmental Research Letters, 2013, 8, 015024.	5.2	18
49	Bioethanol and Biodiesel as Alternative Transportation Fuels in China: Current Status, Future Potentials, and Life Cycle Analysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2012, 34, 1067-1075.	2.3	6
50	A comparison of biomass gasification and pyrolysis in three kinds of reactors using corn stalk pellets. Journal of Renewable and Sustainable Energy, 2012, 4, 033119.	2.0	6
51	Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China. Applied Energy, 2012, 90, 218-224.	10.1	155
52	Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy and Environmental Science, 2011, 4, 3773.	30.8	141
53	Life cycle energy and greenhouse gas analysis for agave-derived bioethanol. Energy and Environmental Science, 2011, 4, 3110.	30.8	81
54	Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China. Applied Energy, 2011, 88, 289-297.	10.1	225

Χιάογυ Υάν

#	Article	IF	CITATIONS
55	Using coal for transportation in China: Life cycle GHG of coal-based fuel and electric vehicle, and policy implications. International Journal of Greenhouse Gas Control, 2010, 4, 878-887.	4.6	84
56	Energy demand and emissions from road transportation vehicles in China. Progress in Energy and Combustion Science, 2010, 36, 651-676.	31.2	164
57	Biofuels and synthetic fuels in the US and China: A review of Well-to-Wheel energy use and greenhouse gas emissions with the impact of land-use change. Energy and Environmental Science, 2010, 3, 190-197.	30.8	72
58	Energy demand and greenhouse gas emissions during the production of a passenger car in China. Energy Conversion and Management, 2009, 50, 2964-2966.	9.2	19
59	Reduction potentials of energy demand and CHG emissions in China's road transport sector. Energy Policy, 2009, 37, 658-668.	8.8	229
60	Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China. Renewable and Sustainable Energy Reviews, 2009, 13, 2505-2514.	16.4	65
61	Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China. Energy, 2008, 33, 1654-1658.	8.8	122
62	Study on energy use in China. Journal of the Energy Institute, 2007, 80, 110-115.	5.3	21