Hang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8696263/publications.pdf

Version: 2024-02-01

		186265	161849
54	3,488	28	54
papers	citations	h-index	g-index
56	56	56	4895
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant Cell, 2010, 22, 17-33.	6.6	514
2	Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two <i>Arabidopsis</i> Ecotypes and Their Reciprocal Hybrids. Plant Cell, 2012, 24, 875-892.	6.6	297
3	A High-Density SNP Genotyping Array for Rice Biology and Molecular Breeding. Molecular Plant, 2014, 7, 541-553.	8.3	251
4	A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics, 2021, 53, 574-584.	21.4	164
5	MYB20, MYB42, MYB43, and MYB85 Regulate Phenylalanine and Lignin Biosynthesis during Secondary Cell Wall Formation. Plant Physiology, 2020, 182, 1272-1283.	4.8	154
6	Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 2020, 52, 565-571.	21.4	146
7	SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis. Molecular Plant, 2015, 8, 1038-1052.	8.3	140
8	<i>Arabidopsis</i> SAURs are critical for differential light regulation of the development of various organs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6071-6076.	7.1	127
9	Arabidopsis DE-ETIOLATED1 Represses Photomorphogenesis by Positively Regulating Phytochrome-Interacting Factors in the Dark. Plant Cell, 2014, 26, 3630-3645.	6.6	116
10	The DTH8-Hd1 Module Mediates Day-Length-Dependent Regulation of Rice Flowering. Molecular Plant, 2017, 10, 948-961.	8.3	107
11	Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nature Communications, 2020, 11, 1886.	12.8	102
12	Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science, 2012, 193-194, 8-17.	3.6	98
13	Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theoretical and Applied Genetics, 2011, 123, 869-879.	3.6	93
14	Origin and Evolution of Core Components Responsible for Monitoring Light Environment Changes during Plant Terrestrialization. Molecular Plant, 2019, 12, 847-862.	8.3	85
15	Poaceae-specific <i>MS1</i> encodes a phospholipid-binding protein for male fertility in bread wheat. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12614-12619.	7.1	83
16	The Transcription Factors TCP4 and PIF3 Antagonistically Regulate Organ-Specific Light Induction of <i>SAUR</i> Genes to Modulate Cotyledon Opening during De-Etiolation in Arabidopsis. Plant Cell, 2019, 31, 1155-1170.	6.6	74
17	A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Molecular Plant, 2022, 15, 1268-1284.	8.3	74
18	Genome-wide regulation of light-controlled seedling morphogenesis by three families of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6482-6487.	7.1	68

#	Article	IF	Citations
19	Genome Variation Map: a data repository of genome variations in BIG Data Center. Nucleic Acids Research, 2018, 46, D944-D949.	14.5	53
20	Two-signal requirement for growth-promoting function of Yap in hepatocytes. ELife, 2015, 4, .	6.0	51
21	Development of genomics-based genotyping platforms and their applications in rice breeding. Current Opinion in Plant Biology, 2013, 16, 247-254.	7.1	46
22	Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4623-4631.	7.1	46
23	The HuangZaoSi Maize Genome Provides Insights into Genomic Variation and Improvement History of Maize. Molecular Plant, 2019, 12, 402-409.	8.3	41
24	Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiology and Biochemistry, 2017, 111, 50-58.	5. 8	40
25	Simultaneous Identification of Multiple Causal Mutations in Rice. Frontiers in Plant Science, 2016, 7, 2055.	3.6	40
26	Pedigreeâ€based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding. Plant Biotechnology Journal, 2016, 14, 638-648.	8.3	38
27	The Asymmetric Expression of SAUR Genes Mediated by ARF7/19 Promotes the Gravitropism and Phototropism of Plant Hypocotyls. Cell Reports, 2020, 31, 107529.	6.4	35
28	RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize. PLoS ONE, 2015, 10, e0143128.	2.5	34
29	SKIP regulates environmental fitness and floral transition by forming two distinct complexes in <i>Arabidopsis</i> . New Phytologist, 2019, 224, 321-335.	7.3	33
30	Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo. GigaScience, $2018, 7, \ldots$	6.4	32
31	The telomereâ€toâ€telomere gapâ€free genome of four rice parents reveals <scp>SV</scp> and <scp>PAV</scp> patterns in hybrid rice breeding. Plant Biotechnology Journal, 2022, 20, 1642-1644.	8.3	31
32	Arabidopsis DET1 Represses Photomorphogenesis in Part by Negatively Regulating DELLA Protein Abundance in Darkness. Molecular Plant, 2015, 8, 622-630.	8.3	26
33	Chromatin remodeling complexes regulate genome architecture in Arabidopsis. Plant Cell, 2022, 34, 2638-2651.	6.6	24
34	TCP transcription factors suppress cotyledon trichomes by impeding a cell differentiation-regulating complex. Plant Physiology, 2021, 186, 434-451.	4.8	20
35	Genome-wide dissection of heterosis for yield traits in two-line hybrid rice populations. Scientific Reports, 2017, 7, 7635.	3.3	18
36	Active DNA demethylation regulates tracheary element differentiation in <i>Arabidopsis</i> . Science Advances, 2020, 6, eaaz2963.	10.3	16

#	Article	IF	CITATIONS
37	Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. Nature Food, 2021, 2, 348-362.	14.0	16
38	MicroRNAs Are Involved in Maize Immunity Against Fusarium verticillioides Ear Rot. Genomics, Proteomics and Bioinformatics, 2020, 18, 241-255.	6.9	14
39	Genome-Wide Association Study of the Genetic Basis of Effective Tiller Number in Rice. Rice, 2021, 14, 56.	4.0	14
40	Highly efficient genotyping of rice biparental populations by GoldenGate assays based on parental resequencing. Theoretical and Applied Genetics, 2014, 127, 297-307.	3.6	13
41	Genome-wide study of an elite rice pedigree reveals a complex history of genetic architecture for breeding improvement. Scientific Reports, 2017, 7, 45685.	3.3	13
42	New resources for genetic studies in maize (<i>Zea mays</i> L.): a genomeâ€wide Maize6Hâ€60K single nucleotide polymorphism array and its application. Plant Journal, 2021, 105, 1113-1122.	5.7	13
43	De novo assembly and comparative analysis of root transcriptomes from different varieties of Panax ginseng C. A. Meyer grown in different environments. Science China Life Sciences, 2015, 58, 1099-1110.	4.9	12
44	CHD3 chromatin-remodeling factor PICKLE regulates floral transition partially via modulating LEAFY expression at the chromatin level in Arabidopsis. Science China Life Sciences, 2016, 59, 516-528.	4.9	10
45	The hybrid protein interactome contributes to rice heterosis as epistatic effects. Plant Journal, 2020, 102, 116-128.	5.7	10
46	Structural and Functional Analyses of Hub MicroRNAs in An Integrated Gene Regulatory Network of Arabidopsis. Genomics, Proteomics and Bioinformatics, 2022, 20, 747-764.	6.9	10
47	Time Series RNA-seq in Pigeonpea Revealed the Core Genes in Metabolic Pathways under Aluminum Stress. Genes, 2020, 11, 380.	2.4	9
48	Genomic insights on the contribution of introgressions from Xian/Indica to the genetic improvement of Geng/Japonica rice cultivars. Plant Communications, 2022, 3, 100325.	7.7	8
49	Allele-specific DNA methylation analyses associated with siRNAs in Arabidopsis hybrids. Science China Life Sciences, 2014, 57, 519-525.	4.9	7
50	A single nucleotide substitution at $5\hat{a} \in ^2$ -UTR of GSN1 represses its translation and leads to an increase of grain length in rice. Journal of Genetics and Genomics, 2019, 46, 105-108.	3.9	6
51	A minus-end directed kinesin motor directs gravitropism in Physcomitrella patens. Nature Communications, 2021, 12, 4470.	12.8	4
52	Whole genome sequencing of Enterobacter mori, an emerging pathogen of kiwifruit and the potential genetic adaptation to pathogenic lifestyle. AMB Express, 2021, 11, 129.	3.0	4
53	Single-Molecule Sequencing Assists Genome Assembly Improvement and Structural Variation Inference. Molecular Plant, 2016, 9, 1085-1087.	8.3	2
54	Exploring the genetic characteristics of 93-11 and Nipponbare recombination inbred lines based on the GoldenGate SNP assay. Science China Life Sciences, 2016, 59, 700-708.	4.9	0