
Richard L Ferrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/869585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toll-like Receptor 9 Promotes Initiation of Gastric Tumorigenesis by Augmenting Inflammation and Cellular Proliferation. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 567-586.	4.5	8
2	Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells. Cell Reports, 2021, 34, 108677.	6.4	44
3	Analysis of Innate Immune Responses to Helicobacter pylori. Methods in Molecular Biology, 2021, 2283, 191-214.	0.9	2
4	Helicobacter pylori-induced gastric carcinogenesis. , 2021, , 91-118.		1
5	Nuclear trafficking of bacterial effector proteins. Cellular Microbiology, 2021, 23, e13320.	2.1	7
6	<i>Helicobacter pylori</i> Xanthine–Guanine–Hypoxanthine Phosphoribosyltransferase—A Putative Target for Drug Discovery against Gastrointestinal Tract Infections. Journal of Medicinal Chemistry, 2021, 64, 5710-5729.	6.4	4
7	Constitutive STAT3 Serine Phosphorylation Promotes Helicobacter-Mediated Gastric Disease. American Journal of Pathology, 2020, 190, 1256-1270.	3.8	17
8	Innate Immune Molecule NLRC5 Protects Mice From Helicobacter-induced Formation of Gastric Lymphoid Tissue. Gastroenterology, 2020, 159, 169-182.e8.	1.3	18
9	Review: Helicobacter: Inflammation, immunology, and vaccines. Helicobacter, 2019, 24, e12644.	3.5	47
10	Nodâ€ l ike receptors are critical for gut–brain axis signalling in mice. Journal of Physiology, 2019, 597, 5777-5797.	2.9	48
11	Anti- <i>Helicobacter pylori</i> activity of ethoxzolamide. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1660-1667.	5.2	41
12	Role of NOD1 and ALPK1/TIFA Signalling in Innate Immunity Against Helicobacter pylori Infection. Current Topics in Microbiology and Immunology, 2019, 421, 159-177.	1.1	11
13	Complete genome sequence of Helicobacter pylori B128 7.13 and a singleâ€step method for the generation of unmarked mutations. Helicobacter, 2019, 24, e12587.	3.5	1
14	NLRC5 deficiency has a moderate impact on immunodominant <scp>CD</scp> 8 ⁺ Tâ€eell responses during rotavirus infection of adult mice. Immunology and Cell Biology, 2019, 97, 552-562.	2.3	10
15	The â€~missing' gastric microbe; the impact of gastric cancer-associated microbiota on Helicobacter pylori growth in vitro and its implications in gastric carcinogenesis. Access Microbiology, 2019, 1, .	0.5	0
16	NOD1 is required for <i>Helicobacter pylori</i> induction of IL-33 responses in gastric epithelial cells. Cellular Microbiology, 2018, 20, e12826.	2.1	26
17	Hyperactive gp130/STAT3â€driven gastric tumourigenesis promotes submucosal tertiary lymphoid structure development. International Journal of Cancer, 2018, 143, 167-178.	5.1	43
18	Isolation of Mouse Primary Gastric Epithelial Cells to Investigate the Mechanisms of Helicobacter pylori Associated Disease. Methods in Molecular Biology, 2018, 1725, 119-126.	0.9	3

RICHARD L FERRERO

#	Article	IF	CITATIONS
19	Loss of NF-κB1 Causes Gastric Cancer with Aberrant Inflammation and Expression of Immune Checkpoint Regulators in a STAT-1-Dependent Manner. Immunity, 2018, 48, 570-583.e8.	14.3	61
20	Mouse Models Of Helicobacter Infection And Gastric Pathologies. Journal of Visualized Experiments, 2018, , .	0.3	5
21	Helicobacter pylori Outer Membrane Vesicle Size Determines Their Mechanisms of Host Cell Entry and Protein Content. Frontiers in Immunology, 2018, 9, 1466.	4.8	139
22	The Use of CRISPR/Cas9 Gene Editing to Confirm Congenic Contaminations in Host-Pathogen Interaction Studies. Frontiers in Cellular and Infection Microbiology, 2018, 8, 87.	3.9	3
23	Membrane vesicles from <i>Pseudomonas aeruginosa</i> activate the noncanonical inflammasome through caspaseâ€5 in human monocytes. Immunology and Cell Biology, 2018, 96, 1120-1130.	2.3	65
24	Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiological Reviews, 2017, 97, 1165-1209.	28.8	63
25	Structural influences on the activity of bismuth(III) indole-carboxylato complexes towards Helicobacter pylori and Leishmania. Journal of Inorganic Biochemistry, 2017, 177, 266-275.	3.5	28
26	Bacterial membrane vesicles transport their DNA cargo into host cells. Scientific Reports, 2017, 7, 7072.	3.3	267
27	Regulation and functions of inflammasome-mediated cytokines in Helicobacter pylori infection. Microbes and Infection, 2017, 19, 449-458.	1.9	23
28	Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells. Journal of Steroid Biochemistry and Molecular Biology, 2017, 170, 49-53.	2.5	24
29	A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization. Frontiers in Cellular and Infection Microbiology, 2017, 7, 219.	3.9	40
30	Virulence Mechanisms of Helicobacter pylori: An Overview. , 2016, , 57-87.		1
31	Interferon-Î ³ promotes gastric lymphoid follicle formation but not gastritis in Helicobacter-infected BALB/c mice. Gut Pathogens, 2016, 8, 61.	3.4	6
32	Loss of gastrokine-2 drives premalignant gastric inflammation and tumor progression. Journal of Clinical Investigation, 2016, 126, 1383-1400.	8.2	40
33	Increased Outer Membrane Vesicle Formation in a <i>Helicobacter pylori tolB</i> Mutant. Helicobacter, 2015, 20, 269-283.	3.5	82
34	Immune modulation by bacterial outer membrane vesicles. Nature Reviews Immunology, 2015, 15, 375-387.	22.7	672
35	Synthesis and structural characterisation of bismuth(<scp>iii</scp>) hydroxamates and their activity against Helicobacter pylori. Dalton Transactions, 2015, 44, 16903-16913.	3.3	30
36	Bismuth(<scp>iii</scp>) complexes derived from α-amino acids: the impact of hydrolysis and oxido-cluster formation on their activity against Helicobacter pylori. Dalton Transactions, 2014, 43, 17980-17990.	3.3	21

#	Article	IF	CITATIONS
37	Bismuth(<scp>iii</scp>) benzohydroxamates: powerful anti-bacterial activity against <i>Helicobacter pylori</i> and hydrolysis to a unique Bi ₃₄ oxido-cluster [Bi ₃₄ O ₂₂ (BHA) ₂₂ (<i>H</i> BHA) ₁₄ (DMSO) ₆]. Chemical Communications, 2014, 50, 15232-15234.	4.1	32
38	The Immune Receptor NOD1 and Kinase RIP2 Interact with Bacterial Peptidoglycan on Early Endosomes to Promote Autophagy and Inflammatory Signaling. Cell Host and Microbe, 2014, 15, 623-635.	11.0	249
39	Bismuth(<scp>iii</scp>) β-thioxoketonates as antibiotics against Helicobacter pylori and as anti-leishmanial agents. Dalton Transactions, 2014, 43, 1279-1291.	3.3	39
40	93. Cytokine, 2014, 70, 50.	3.2	0
41	A sweeter way to combat Helicobacter pylori? Bismuth(III) complexes and oxido-clusters derived from non-nutritive sweeteners and their activity against H.Âpylori. Journal of Organometallic Chemistry, 2013, 724, 88-94.	1.8	6
42	Making Bispirin: synthesis, structure and activity against Helicobacter pylori of bismuth(iii) acetylsalicylate. Chemical Communications, 2013, 49, 2870.	4.1	26
43	A novel NOD1- and CagA-independent pathway of interleukin-8 induction mediated by the <i>Helicobacter pylori</i> type IV secretion system. Cellular Microbiology, 2013, 15, 554-570.	2.1	84
44	Nucleotide Oligomerization Domain 1 Enhances IFN-Î ³ Signaling in Gastric Epithelial Cells during <i>Helicobacter pylori</i> Infection and Exacerbates Disease Severity. Journal of Immunology, 2013, 190, 3706-3715.	0.8	56
45	Synthesis and Characterisation of Bismuth(III) Aminoarenesulfonate Complexes and Their Powerful Bactericidal Activity against <i>Helicobacter pylori</i> . Chemistry - A European Journal, 2013, 19, 5264-5275.	3.3	27
46	Helicobacter pylori VacA Suppresses Lactobacillus acidophilus-Induced Interferon Beta Signaling in Macrophages via Alterations in the Endocytic Pathway. MBio, 2013, 4, e00609-12.	4.1	31
47	Peptidoglycan maturation enzymes affect flagellar functionality in bacteria. Molecular Microbiology, 2013, 88, 456-457.	2.5	0
48	Electron Microscopic, Genetic and Protein Expression Analyses of Helicobacter acinonychis Strains from a Bengal Tiger. PLoS ONE, 2013, 8, e71220.	2.5	25
49	Helicobacter pylori cag Pathogenicity Island (cagPAI) Involved in Bacterial Internalization and IL-8 Induced Responses via NOD1- and MyD88-Dependent Mechanisms in Human Biliary Epithelial Cells. PLoS ONE, 2013, 8, e77358.	2.5	41
50	Bismuth(III) Thiobenzoates and their Activity against Helicobacter pylori. Australian Journal of Chemistry, 2012, 65, 883.	0.9	12
51	Peptidoglycan maturation enzymes affect flagellar functionality in bacteria. Molecular Microbiology, 2012, 86, 845-856.	2.5	46
52	Remarkable in vitro bactericidal activity of bismuth(iii) sulfonates against Helicobacter pylori. Dalton Transactions, 2012, 41, 11798.	3.3	38
53	The Use of AlbuMAX II [®] as a Blood or Serum Alternative for the Culture of <i>Helicobacter pylori</i> . Helicobacter, 2012, 17, 68-76.	3.5	5
54	Mouse Models of Helicobacter-Induced Gastric Cancer: Use of Cocarcinogens. Methods in Molecular Biology, 2012, 921, 157-173.	0.9	13

RICHARD L FERRERO

#	Article	IF	CITATIONS
55	Bismuth(III) Saccharinate and Thiosaccharinate Complexes and the Effect of Ligand Substitution on Their Activity against <i>Helicobacter pylori</i> . Organometallics, 2011, 30, 6283-6291.	2.3	37
56	The molecular pathogenesis of STAT3â€driven gastric tumourigenesis in mice is independent of ILâ€17. Journal of Pathology, 2011, 225, 255-264.	4.5	27
57	Genetic modulation of TLR8 response following bacterial phagocytosis. Human Mutation, 2010, 31, 1069-1079.	2.5	67
58	Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cellular Microbiology, 2010, 12, 372-385.	2.1	382
59	The innate immune molecule, NOD1, regulates direct killing of <i>Helicobacter pylori</i> by antimicrobial peptides. Cellular Microbiology, 2010, 12, 626-639.	2.1	103
60	Role of virulence factors and host cell signaling in the recognition of <i>Helicobacter pylori</i> and the generation of immune responses. Future Microbiology, 2010, 5, 1233-1255.	2.0	19
61	<i>Helicobacter pylori</i> Exploits Cholesterol-Rich Microdomains for Induction of NF-κB-Dependent Responses and Peptidoglycan Delivery in Epithelial Cells. Infection and Immunity, 2010, 78, 4523-4531.	2.2	66
62	Vitamin B ₆ Is Required for Full Motility and Virulence in <i>Helicobacter pylori</i> . MBio, 2010, 1, .	4.1	38
63	Protease-Activated Receptor-1 Down-regulates the Murine Inflammatory and Humoral Response to Helicobacter pylori. Gastroenterology, 2010, 138, 573-582.	1.3	28
64	Both the p33 and p55 Subunits of the Helicobacter pylori VacA Toxin Are Targeted to Mammalian Mitochondria. Journal of Molecular Biology, 2010, 401, 792-798.	4.2	53
65	Bismuth(iii) complexes derived from non-steroidal anti-inflammatory drugs and their activity against Helicobacter pylori. Dalton Transactions, 2010, 39, 2861.	3.3	69
66	Structural and solution studies of phenylbismuth(III) sulfonate complexes and their activity against Helicobacter pylori. Dalton Transactions, 2010, 39, 9633.	3.3	44
67	Helicobacter pylori-Induced Histone Modification, Associated Gene Expression in Gastric Epithelial Cells, and Its Implication in Pathogenesis. PLoS ONE, 2010, 5, e9875.	2.5	84
68	<i>Helicobacter pylori</i> Induces MAPK Phosphorylation and AP-1 Activation via a NOD1-Dependent Mechanism. Journal of Immunology, 2009, 183, 8099-8109.	0.8	166
69	Secretion of flagellin by the LEE-encoded type III secretion system of enteropathogenic Escherichia coli. BMC Microbiology, 2009, 9, 30.	3.3	22
70	Bismuth(iii) 5-sulfosalicylate complexes: structure, solubility and activity against Helicobacter pylori. Dalton Transactions, 2009, , 6377.	3.3	42
71	A Commensal Helicobacter sp. of the Rodent Intestinal Flora Activates TLR2 and NOD1 Responses in Epithelial Cells. PLoS ONE, 2009, 4, e5396.	2.5	22
72	NF-κB Activation during Acute <i>Helicobacter pylori</i> Infection in Mice. Infection and Immunity, 2008, 76, 551-561.	2.2	43

RICHARD L FERRERO

#	Article	IF	CITATIONS
73	The β1 Integrin Activates JNK Independent of CagA, and JNK Activation Is Required for Helicobacter pylori CagA+-induced Motility of Gastric Cancer Cells. Journal of Biological Chemistry, 2008, 283, 13952-13963.	3.4	55
74	Nod1-Mediated Innate Immune Recognition of Peptidoglycan Contributes to the Onset of Adaptive Immunity. Immunity, 2007, 26, 445-459.	14.3	281
75	Muc1 Mucin Limits Both Helicobacter pylori Colonization of the Murine Gastric Mucosa and Associated Gastritis. Gastroenterology, 2007, 133, 1210-1218.	1.3	170
76	Mammalian NLR proteins; discriminating foe from friend. Immunology and Cell Biology, 2007, 85, 495-502.	2.3	58
77	Nod-like proteins in immunity, inflammation and disease. Nature Immunology, 2006, 7, 1250-1257.	14.5	794
78	Helicobacter pylori Heat Shock Protein 60 Mediates Interleukin-6 Production by Macrophages via a Toll-like Receptor (TLR)-2-, TLR-4-, and Myeloid Differentiation Factor 88-independent Mechanism. Journal of Biological Chemistry, 2004, 279, 245-250.	3.4	151
79	Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunology, 2004, 5, 1166-1174.	14.5	1,091
80	Reduced activation of inflammatory responses in host cells by mouse-adapted Helicobacter pylori isolates. Cellular Microbiology, 2002, 4, 285-296.	2.1	119
81	The Mouse Colonizing Helicobacter pylori Strain SS1 May Lack a Functional cag Pathogenicity Island. Helicobacter, 2002, 7, 139-140.	3.5	81
82	Outbred mice with long-termHelicobacter felis infection develop both gastric lymphoid tissue and glandular hyperplastic lesions. Journal of Pathology, 2000, 191, 333-340.	4.5	41
83	Evaluation of Nitrofurantoin Combination Therapy of Metronidazole-Sensitive and -Resistant Helicobacter pylori Infections in Mice. Antimicrobial Agents and Chemotherapy, 2000, 44, 2623-2629.	3.2	22
84	Essential role of Helicobacter pylori gamma-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Molecular Microbiology, 1999, 31, 1359-1372.	2.5	184
85	Cloning and allelic exchange mutagenesis of two flagellin genes of Helicobacter felis. Molecular Microbiology, 1999, 33, 350-362.	2.5	55
86	Exposure to Metronidazole In Vivo Readily Induces Resistance in <i>Helicobacter pylori</i> and Reduces the Efficacy of Eradication Therapy in Mice. Antimicrobial Agents and Chemotherapy, 1999, 43, 777-781.	3.2	37
87	<i>Helicobacter pylori rocF</i> Is Required for Arginase Activity and Acid Protection In Vitro but Is Not Essential for Colonization of Mice or for Urease Activity. Journal of Bacteriology, 1999, 181, 7314-7322.	2.2	108
88	Immune Responses of Specific-Pathogen-Free Mice to Chronic <i>Helicobacter pylori</i> (Strain SS1) Infection. Infection and Immunity, 1998, 66, 1349-1355.	2.2	130
89	Vaccination contre les infections à Helicobacter pylori. Annales De L'Institut Pasteur / Actualités, 1995, 6, 237-244.	0.1	0
90	Helicobacter pylori hspA-hspB heat-shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Molecular Microbiology, 1994, 14, 959-974.	2.5	148

#	Article	IF	CITATIONS
91	Cloning, expression and sequencing of Helicobacter felis urease genes. Molecular Microbiology, 1993, 9, 323-333.	2.5	68
92	In Vivo Modeling of Helicobacter-Associated Gastrointestinal Diseases. , 0, , 565-582.		9
93	In Vivo Adaptation to the Host. , 0, , 583-592.		7