Robert Horton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8694251/publications.pdf

Version: 2024-02-01

161 5,398 34 66 papers citations h-index g-index

163 163 163 4083 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Science Society of America Journal, 2007, 71, 8-14.	2.2	478
2	Assessing potential of biochar for increasing waterâ€holding capacity of sandy soils. GCB Bioenergy, 2013, 5, 132-143.	5.6	394
3	Simple Field Method for Determining Unsaturated Hydraulic Conductivity. Soil Science Society of America Journal, 1991, 55, 467.	2.2	393
4	A New Perspective on Soil Thermal Properties. Soil Science Society of America Journal, 2001, 65, 1641-1647.	2.2	289
5	Measurement of Soil Thermal Properties with a Dualâ€Probe Heatâ€Pulse Technique. Soil Science Society of America Journal, 1994, 58, 1288-1294.	2.2	277
6	An Empirical Model for Estimating Soil Thermal Conductivity from Texture, Water Content, and Bulk Density. Soil Science Society of America Journal, 2014, 78, 1859-1868.	2.2	122
7	Water Potential and Aggregate Size Effects on Contact Angle and Surface Energy. Soil Science Society of America Journal, 2004, 68, 383-393.	2.2	113
8	Development and Application of the Heat Pulse Method for Soil Physical Measurements. Reviews of Geophysics, 2018, 56, 567-620.	23.0	103
9	Soil Heat Storage Measurements in Energy Balance Studies. Agronomy Journal, 2007, 99, 311-319.	1.8	102
10	Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China. Biogeochemistry, 2009, 96, 149-162.	3.5	95
11	Simultaneous Transfer of Heat, Water, and Solute in Porous Media: I. Theoretical Development. Soil Science Society of America Journal, 1992, 56, 1350-1356.	2.2	91
12	Water Transport in Unsaturated Nonisothermal Salty Soil: II. Theoretical Development. Soil Science Society of America Journal, 1989, 53, 1330-1337.	2.2	90
13	How efficiently do corn†and soybeanâ€based cropping systems use water? A systems modeling analysis. Global Change Biology, 2016, 22, 666-681.	9.5	80
14	Development of Thermoâ€Time Domain Reflectometry for Vadose Zone Measurements. Vadose Zone Journal, 2003, 2, 544-551.	2.2	73
15	Field Tests of the Soil Heat Flux Plate Method and Some Alternatives. Agronomy Journal, 2006, 98, 1005-1014.	1.8	71
16	Macroporous Carbon Supported Zerovalent Iron for Remediation of Trichloroethylene. ACS Sustainable Chemistry and Engineering, 2017, 5, 1586-1593.	6.7	63
17	Changes in soil organic carbon and total nitrogen after 28Âyears grassland afforestation: effects of tree species, slope position, and soil order. Plant and Soil, 2010, 331, 165-179.	3.7	60
18	Integral Method for Estimating Soil Hydraulic Properties. Soil Science Society of America Journal, 1998, 62, 585-592.	2,2	58

#	Article	IF	CITATIONS
19	Determination of Soil Bulk Density with Thermoâ€Time Domain Reflectometry Sensors. Soil Science Society of America Journal, 2008, 72, 1000-1005.	2.2	55
20	Use of the Dual-Probe Heat-Pulse Technique to Monitor Soil Water Content in the Vadose Zone. Vadose Zone Journal, 2003, 2, 572-579.	2.2	53
21	Simultaneous Water Content, Airâ€Filled Porosity, and Bulk Density Measurements with Thermoâ€Time Domain Reflectometry. Soil Science Society of America Journal, 2001, 65, 1618-1622.	2.2	51
22	Simultaneous Transfer of Heat, Water, and Solute in Porous Media: II. Experiment and Analysis. Soil Science Society of America Journal, 1992, 56, 1357-1365.	2.2	50
23	Salinity and Compaction Effects on Soil Water Evaporation and Water and Solute Distributions. Soil Science Society of America Journal, 1999, 63, 752-758.	2.2	46
24	Measurement of Field Soil Hydraulic and Solute Transport Parameters. Soil Science Society of America Journal, 1998, 62, 1172-1178.	2.2	45
25	Evaluation of Three Models that Describe Soil Water Retention Curves from Saturation to Oven Dryness. Soil Science Society of America Journal, 2008, 72, 1542-1546.	2.2	44
26	Moisture-Dependent Wettability of Artificial Hydrophobic Soils and Its Relevance for Soil Water Desorption Curves. Soil Science Society of America Journal, 2012, 76, 342-349.	2.2	43
27	Water Transport in Unsaturated Nonisothermal Salty Soil: I. Experimental Results. Soil Science Society of America Journal, 1989, 53, 1323-1329.	2.2	42
28	Horizontal Infiltration Method for Determining Brooks orey Model Parameters. Soil Science Society of America Journal, 2002, 66, 1733-1739.	2.2	42
29	Effect of Daily Soil Temperature Fluctuations on Soil Electrical Conductivity as Measured with the Geonics®EM-38. Precision Agriculture, 2004, 5, 145-152.	6.0	41
30	Measuring Subsurface Soilâ€Water Evaporation with an Improved Heatâ€Pulse Probe. Soil Science Society of America Journal, 2012, 76, 876-879.	2.2	41
31	Quantitative Color Image Analysis of Agronomic Images. Agronomy Journal, 1999, 91, 148-153.	1.8	40
32	Evaluation of the Heat Pulse Ratio Method for Measuring Soil Water Flux. Soil Science Society of America Journal, 2005, 69, 757-765.	2.2	40
33	Canopy Shading Effects on Soil Heat and Water Flow. Soil Science Society of America Journal, 1989, 53, 669-679.	2.2	39
34	Comparison of two soil temperature algorithms for a bare ground site on the Loess Plateau in China. Journal of Geophysical Research, 2008, 113 , .	3.3	36
35	Derivation of an Explicit Form of the Percolationâ∈Based Effectiveâ∈Medium Approximation for Thermal Conductivity of Partially Saturated Soils. Water Resources Research, 2018, 54, 1389-1399.	4.2	36
36	A Simple Method for Estimating Water Diffusivity of Unsaturated Soils. Soil Science Society of America Journal, 2004, 68, 713-718.	2.2	35

#	Article	IF	CITATIONS
37	Determining Soil Ice Contents during Freezing and Thawing with Thermoâ€Time Domain Reflectometry. Vadose Zone Journal, 2015, 14, 1-9.	2.2	35
38	Measuring Nearâ€Surface Soil Thermal Properties with the Heatâ€Pulse Method: Correction of Ambient Temperature and Soil–Air Interface Effects. Soil Science Society of America Journal, 2014, 78, 1575-1583.	2.2	34
39	Temporal Changes of Soil Water Retention Behavior as Affected by Wetting and Drying Following Tillage. Soil Science Society of America Journal, 2017, 81, 1288-1295.	2.2	33
40	Analytical Solution for Oneâ€Dimensional Heat Conductionâ€Convection Equation. Soil Science Society of America Journal, 1998, 62, 123-128.	2.2	32
41	A Self-Calibrated Dual Probe Heat Pulse Sensor for In Situ Calibrating the Probe Spacing. Soil Science Society of America Journal, 2013, 77, 417-421.	2.2	32
42	Subsurface Drainage Flow and Soil Water Dynamics of Reconstructed Prairies and Corn Rotations for Biofuel Production. Vadose Zone Journal, 2014, 13, 1-11.	2.2	32
43	In Situ Monitoring of Soil Bulk Density with a Thermo-TDR Sensor. Soil Science Society of America Journal, 2014, 78, 400-407.	2.2	32
44	Soil Heat Flux Plates: Heat Flow Distortion and Thermal Contact Resistance. Agronomy Journal, 2007, 99, 304-310.	1.8	31
45	Water Potential and Aggregate Size Effects on Contact Angle and Surface Energy. Soil Science Society of America Journal, 2004, 68, 383.	2.2	31
46	Diffusion in sparsely connected pore spaces: Temporal and spatial scaling. Water Resources Research, 2002, 38, 21-1-21-13.	4.2	30
47	An Empirical Model for Estimating Soil Thermal Conductivity from Soil Water Content and Porosity. Journal of Hydrometeorology, 2016, 17, 601-613.	1.9	30
48	Assessing the Biochar Effects on Selected Physical Properties of a Sandy Soil: An Analytical Approach. Communications in Soil Science and Plant Analysis, 2017, 48, 1387-1398.	1.4	30
49	Approaches for Estimating Soil Water Retention Curves at Various Bulk Densities With the Extended Van Genuchten Model. Water Resources Research, 2018, 54, 5584-5601.	4.2	30
50	A Time Domain Reflectometry Method to Measure Immobile Water Content and Mass Exchange Coefficient. Soil Science Society of America Journal, 2000, 64, 1911-1917.	2.2	29
51	Effect of Gravel-Sand Mulch on Soil Water and Temperature in the Semiarid Loess Region of Northwest China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1484-1494.	1.9	29
52	Sensible Heat Balance Estimates of Transient Soil Ice Contents. Vadose Zone Journal, 2016, 15, 1-11.	2.2	28
53	Effects of Drying Treatments on Porosity of Soil Materials. Soil Science Society of America Journal, 1985, 49, 1360-1364.	2.2	27
54	Evaluation of a Simple Method for Estimating Solute Transport Parameters Laboratory Studies. Soil Science Society of America Journal, 2000, 64, 492-498.	2.2	27

#	Article	IF	CITATIONS
55	An Analytical Solution to the Oneâ€Dimensional Heat Conduction–Convection Equation in Soil. Soil Science Society of America Journal, 2012, 76, 1978-1986.	2.2	27
56	Determining Soil Bulk Density with Thermoâ€Time Domain Reflectometry: A Thermal Conductivityâ€Based Approach. Soil Science Society of America Journal, 2016, 80, 48-54.	2.2	27
57	Comparing Heat-Pulse and Time Domain Reflectometry Soil Water Contents from Thermo-Time Domain Reflectometry Probes. Vadose Zone Journal, 2005, 4, 1080-1086.	2.2	26
58	Wettability and Hysteresis Effects on Water Sorption in Relatively Dry Soil. Soil Science Society of America Journal, 2009, 73, 1947-1951.	2.2	26
59	Effects of Coal Gangue Content on Water Movement and Solute Transport in a China Loess Plateau Soil. Clean - Soil, Air, Water, 2010, 38, 1031-1038.	1.1	24
60	Short, Multineedle Frequency Domain Reflectometry Sensor Suitable for Measuring Soil Water Content. Soil Science Society of America Journal, 2012, 76, 1929-1937.	2.2	24
61	Real-time flood forecast using the coupling support vector machine and data assimilation method. Journal of Hydroinformatics, 2014, 16, 973-988.	2.4	24
62	A modified method for estimating fine and coarse fractal dimensions of soil particle size distributions based on laser diffraction analysis. Journal of Soils and Sediments, 2015, 15, 937-948.	3.0	23
63	Effects of land-use change on soil organic carbon and nitrogen in density fractions and soil $\hat{\Gamma}13C$ and $\hat{\Gamma}15N$ in semiarid grasslands. Plant and Soil, 2015, 390, 419-430.	3.7	23
64	Mathematical analysis of heat pulse signals for soil water flux determination. Water Resources Research, 2002, 38, 27-1-27-7.	4.2	22
65	Analytical Solution of Heat Pulse Method in a Parallelepiped Sample Space with Inclined Needles. Soil Science Society of America Journal, 2008, 72, 1208-1216.	2.2	22
66	Influence of Winter Grazing on Water and Heat Flow in Seasonally Frozen Soil of Inner Mongolia. Vadose Zone Journal, 2013, 12, 1-11.	2.2	22
67	Specific Heat Capacity of Soil Solids: Influences of Clay Content, Organic Matter, and Tightly Bound Water. Soil Science Society of America Journal, 2019, 83, 1062-1066.	2.2	22
68	An Improved Thermoâ€₹DR Technique for Monitoring Soil Thermal Properties, Water Content, Bulk Density, and Porosity. Vadose Zone Journal, 2019, 18, 1-9.	2.2	21
69	Humic acid transport in saturated porous media: Influence of flow velocity and influent concentration. Journal of Environmental Sciences, 2014, 26, 2554-2561.	6.1	20
70	Reduction of estrone to $17\hat{l}^2$ -estradiol in the presence of swine manure colloids. Chemosphere, 2015, 119, 642-645.	8.2	20
71	The Feasibility of Shallow Time Domain Reflectometry Probes to Describe Solute Transport Through Undisturbed Soil Cores. Soil Science Society of America Journal, 2002, 66, 53-57.	2.2	19
72	Steady-State Temperature Distribution in Nonisothermal, Unsaturated Closed Soil Cells. Soil Science Society of America Journal, 1994, 58, 1358-1363.	2.2	18

#	Article	lF	Citations
73	Time Domain Reflectometry Waveform Analysis with Secondâ€Order Bounded Mean Oscillation. Soil Science Society of America Journal, 2014, 78, 1146-1152.	2.2	18
74	Biochar Age and Crop Rotation Impacts on Soil Quality. Soil Science Society of America Journal, 2017, 81, 1157-1167.	2.2	18
75	Using a <i>H</i> _{â^ž} filter assimilation procedure to estimate root zone soil water content. Hydrological Processes, 2010, 24, 3648-3660.	2.6	17
76	An Empirical Model for Estimating Soil Thermal Diffusivity from Texture, Bulk Density, and Degree of Saturation. Journal of Hydrometeorology, 2018, 19, 445-457.	1.9	17
77	Thermal property values of a central lowa soil as functions of soil water content and bulk density or of soil air content. European Journal of Soil Science, 2020, 71, 169-178.	3.9	17
78	Enhancing Germination of Eastern Gamagrass Seed with Stratification and Gibberellic Acid. Crop Science, 2004, 44, 549-552.	1.8	16
79	Field Test and Sensitivity Analysis of a Sensible Heat Balance Method to Determine Soil Ice Contents. Vadose Zone Journal, 2014, 13, 1-10.	2.2	16
80	Tangent Line/Secondâ€Order Bounded Mean Oscillation Waveform Analysis for Short TDR Probe. Vadose Zone Journal, 2016, 15, 1-7.	2.2	16
81	Canopy Chamber Measurements of Carbon Dioxide Fluxes in Corn and Soybean Fields. Vadose Zone Journal, 2018, 17, 1-5.	2.2	16
82	Advances in the heatâ€pulse technique: Improvements in measuring soil thermal properties. Soil Science Society of America Journal, 2020, 84, 1361-1370.	2.2	15
83	Soil Apparent Thermal Diffusivity Estimated by Conduction and by Conduction–Convection Heat Transfer Models. Journal of Hydrometeorology, 2017, 18, 109-118.	1.9	14
84	A Simple Method for Estimating Water Diffusivity of Unsaturated Soils. Soil Science Society of America Journal, 2004, 68, 713.	2.2	14
85	Multiâ€scale assimilation of root zone soil water predictions. Hydrological Processes, 2011, 25, 3158-3172.	2.6	13
86	Numerical Evaluation of a Sensible Heat Balance Method to Determine Rates of Soil Freezing and Thawing. Vadose Zone Journal, 2013, 12, 1-11.	2.2	13
87	Simulations of Water and Thermal Dynamics for Soil Surfaces With Residue Mulch and Surface Runoff. Water Resources Research, 2021, 57, .	4.2	13
88	A Pointâ€Source Method for Rapid Simultaneous Estimation of Soil Hydraulic and Chemical Transport Properties. Soil Science Society of America Journal, 2002, 66, 12-18.	2.2	12
89	Measured and Predicted Solute Transport in a Tile Drained Field. Soil Science Society of America Journal, 2006, 70, 872-881.	2.2	12
90	Humic Acid Transport in Water-Saturated Porous Media. Environmental Modeling and Assessment, 2010, 15, 53-63.	2.2	12

#	Article	IF	CITATIONS
91	Performance of soil particle-size distribution models for describing deposited soils adjacent to constructed dams in the China Loess Plateau. Acta Geophysica, 2011, 59, 124-138.	2.0	12
92	Spatial and Temporal Dynamics of Soilâ€Surface Carbon Dioxide Emissions in Bioenergy Corn Rotations and Reconstructed Prairies. Soil Science Society of America Journal, 2014, 78, 1338-1350.	2.2	12
93	Analytical Solution for Two-Dimensional Heat Conduction beneath a Partial Surface Mulch. Soil Science Society of America Journal, 1990, 54, 1197-1206.	2.2	11
94	Soil iron fractionation and availability at selected landscape positions in a loessial gully region of northwestern China. Soil Science and Plant Nutrition, 2010, 56, 617-626.	1.9	11
95	Estimating the contribution of groundwater to rootzone soil moisture. Hydrology Research, 2013, 44, 1102-1113.	2.7	11
96	Accounting for Time-Variable Soil Porosity Improves the Accuracy of the Gradient Method for Estimating Soil Carbon Dioxide Production. Soil Science Society of America Journal, 2014, 78, 1426-1433.	2.2	11
97	Bulk density effects on soil hydrologic and thermal characteristics: A numerical investigation. Hydrological Processes, 2018, 32, 2203-2216.	2.6	11
98	Thermal conductivity of mineral soils relates linearly to airâ€filled porosity. Soil Science Society of America Journal, 2020, 84, 53-56.	2.2	11
99	Development of Thermo-Time Domain Reflectometry for Vadose Zone Measurements. Vadose Zone Journal, 2003, 2, 544.	2.2	11
100	Exact solution for horizontal water redistribution by general similarity. Soil Science Society of America Journal, 2000, 64, 561-564.	2.2	10
101	Using Surface Time Domain Reflectometry Measurements to Estimate Subsurface Chemical Movement. Vadose Zone Journal, 2003, 2, 539-543.	2.2	10
102	Experimental Determination of Effective Diffusion Parameters in the Matrix of Fractured Till. Vadose Zone Journal, 2004, 3, 1050-1056.	2.2	10
103	Determination of Desert Soil Apparent Thermal Diffusivity Using a Conductionâ€Convection Algorithm. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9569-9578.	3.3	10
104	Estimating the Contribution of Groundwater to the Root Zone of Winter Wheat Using Root Density Distribution Functions. Vadose Zone Journal, 2018, 17, 170075.	2.2	10
105	Biochar and compost amendment impacts on soil water and pore size distribution of a loamy sand soil. Soil Science Society of America Journal, 2021, 85, 1021-1036.	2.2	10
106	A Point-Source Method for Rapid Simultaneous Estimation of Soil Hydraulic and Chemical Transport Properties. Soil Science Society of America Journal, 2002, 66, 12.	2.2	10
107	Use of the Dual-Probe Heat-Pulse Technique to Monitor Soil Water Content in the Vadose Zone. Vadose Zone Journal, 2003, 2, 572.	2.2	10
108	Modeling Water Flow from Subirrigation with Drainage. Soil Science Society of America Journal, 1993, 57, 1451-1457.	2.2	9

7

#	Article	IF	CITATIONS
109	Localized Soil Management in Fertilizer Injection Zone to Reduce Nitrate Leaching. Agronomy Journal, 1998, 90, 747-752.	1.8	9
110	Determining Near-Surface Soil Heat Flux Density Using the Gradient Method: A Thermal Conductivity Model–Based Approach. Journal of Hydrometeorology, 2017, 18, 2285-2295.	1.9	9
111	Thermo–Time Domain Reflectometry Method: Advances in Monitoring In Situ Soil Bulk Density. Methods of Soil Analysis, 2017, 2, 1354.	0.8	9
112	Analytical Method to Determine Soil Hydraulic Properties from Vertical Infiltration Experiments. Soil Science Society of America Journal, 2017, 81, 1303-1314.	2.2	9
113	Capacity and Distribution of Water Stored in the Vadose Zone of the Chinese Loess Plateau. Vadose Zone Journal, 2019, 18, 180203.	2.2	9
114	Estimating thermal conductivity of frozen soils from airâ€filled porosity. Soil Science Society of America Journal, 2020, 84, 1650-1657.	2.2	9
115	Thermally Induced Water Transfer in Salinized, Unsaturated Soil. Soil Science Society of America Journal, 1997, 61, 1293-1299.	2.2	8
116	Development of Thermo-Time Domain Reflectometry for Vadose Zone Measurements. Vadose Zone Journal, 2003, 2, 544-551.	2.2	8
117	Analytical Solution of the Heat Pulse Method in a Parallelepiped Sample Space. Soil Science Society of America Journal, 2007, 71, 1607-1619.	2.2	8
118	An Experimental Study of Coupled Heat and Water Transfer in Wettable and Artificially Hydrophobized Soils. Soil Science Society of America Journal, 2014, 78, 125-132.	2.2	8
119	An Empirical Calibration for Heatâ€Balance Sapâ€Flow Sensors in Maize. Agronomy Journal, 2017, 109, 1122-1128.	1.8	8
120	Thermo–time domain reflectometry method: Advances in monitoring in situ soil bulk density. Soil Science Society of America Journal, 2020, 84, 1354-1360.	2.2	8
121	Advances in thermoâ€time domain reflectometry technique: Measuring ice content in partially frozen soils. Soil Science Society of America Journal, 2020, 84, 1519-1526.	2.2	8
122	Wind effects on soil thermal properties measured by the dualâ€probe heat pulse method. Soil Science Society of America Journal, 2020, 84, 414-424.	2.2	8
123	Effect of subsoil tillage during pipeline construction activities on nearâ€term soil physical properties and crop yields in the rightâ€ofâ€way. Soil Use and Management, 2021, 37, 545-555.	4.9	8
124	Model calculations of water dynamics in lysimeters filled with granular industrial wastes. Journal of Plant Nutrition and Soil Science, 2002, 165, 339-346.	1.9	7
125	A Comparison of Secondâ€Order Derivative Based Models for Time Domain Reflectometry Waveform Analysis. Vadose Zone Journal, 2017, 16, 1-10.	2.2	7
126	Inâ€situ probe spacing calibration improves the heat pulse method for measuring soil heat capacity and water content. Soil Science Society of America Journal, 2020, 84, 1620-1629.	2.2	7

#	Article	IF	CITATIONS
127	Heat and Water Transfer in Compacted and Layered Soils. Journal of Environmental Quality, 1997, 26, 81-88.	2.0	6
128	Measurement of Soil Water Content with Dielectric Dispersion Frequency. Soil Science Society of America Journal, 2014, 78, 1500-1506.	2.2	6
129	Improving Soil Heat Flux Accuracy with the Philip Correction Technique. Journal of Hydrometeorology, 2019, 20, 1435-1448.	1.9	6
130	The Influence of Concrete Grinding Residue on Soil Physical Properties and Plant Growth. Journal of Environmental Quality, 2019, 48, 1842-1848.	2.0	6
131	Lysimeter study of water and salt dynamics in a saline metallurgical waste. Journal of Plant Nutrition and Soil Science, 2002, 165, 211.	1.9	5
132	Advances in the Heat-Pulse Technique: Improvements in Measuring Soil Thermal Properties. Methods of Soil Analysis, 2017, 2, 1361.	0.8	5
133	Advances in Heat-Pulse Methods: Measuring Near-Surface Soil Water Content. Methods of Soil Analysis, 2017, 2, 1376.	0.8	5
134	Application of infinite line source and cylindricalâ€perfectâ€conductors theories to heat pulse measurements with large sensors. Soil Science Society of America Journal, 2021, 85, 1050-1059.	2.2	5
135	The Feasibility of Shallow Time Domain Reflectometry Probes to Describe Solute Transport Through Undisturbed Soil Cores. Soil Science Society of America Journal, 2002, 66, 53.	2.2	5
136	Comparison of Models for Determining Soil-Surface Carbon Dioxide Effluxes in Different Agricultural Systems. Agronomy Journal, 2015, 107, 1077-1086.	1.8	4
137	Surface Energy Balance Partitioning in Tilled Bare Soils. Agricultural and Environmental Letters, 2018, 3, 180039.	1.2	4
138	A Greenhouse Study of Concrete Grinding Residue Influences on Seedling Emergence and Early Growth of Selected Prairie Species. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	4
139	Use of the Dual-Probe Heat-Pulse Technique to Monitor Soil Water Content in the Vadose Zone. Vadose Zone Journal, 2003, 2, 572-579.	2.2	4
140	A Modified Soil Moisture Model for Two‣ayerÂSoil. Ground Water, 2016, 54, 569-578.	1.3	3
141	Spatial Response of Nearâ€6urface Soil Water Contents to Newly Imposed Soil Management. Agricultural and Environmental Letters, 2018, 3, 180032.	1.2	3
142	Advances in Thermo-Time Domain Reflectometry Technique: Measuring Ice Content in Partially Frozen Soils. Methods of Soil Analysis, 2019, 4, 1519.	0.8	3
143	Advances in heatâ€pulse methods: Measuring nearâ€surface soil water content. Soil Science Society of America Journal, 2020, 84, 1376-1383.	2.2	3
144	Using Surface Time Domain Reflectometry Measurements to Estimate Subsurface Chemical Movement. Vadose Zone Journal, 2003, 2, 539.	2.2	3

#	Article	IF	CITATIONS
145	Reply to "Comments on â€~Integral Method for Estimating Soil Hydraulic Properties'― Soil Science Society of America Journal, 1999, 63, 253-253.	2.2	2
146	Weighing Lysimeter Data Confirm the Accuracy and Precision of the Heat-Pulse Technique for Measuring Daily Soil Evaporation. Soil Science Society of America Journal, 2017, 81, 1074-1078.	2.2	2
147	Are Visible Fractures Accurate Predictors of Flow and Mass Transport in Fractured Till?. Ground Water, 2021, 59, 24-30.	1.3	2
148	Enhancing Germination of Eastern Gamagrass Seed with Stratification and Gibberellic Acid. Crop Science, 2004, 44, 549.	1.8	2
149	Inâ€situ tin casting combined with threeâ€dimensional scanner to quantify anecic earthworm burrows. Vadose Zone Journal, 2022, 21, .	2.2	2
150	Using Surface Time Domain Reflectometry Measurements to Estimate Subsurface Chemical Movement. Vadose Zone Journal, 2003, 2, 539-543.	2.2	1
151	Investigating Time-Scale Effects on Reference Evapotranspiration from Epan Data in North China. Journal of Applied Meteorology and Climatology, 2010, 49, 867-878.	1.5	1
152	Simplified Computational Approach for Determining In Situ Probe Spacing of a Dual Probe Heat Pulse Sensor. Soil Science Society of America Journal, 2018, 82, 1113-1116.	2.2	1
153	Summary of Advances in the Heat-Pulse Technique: Improvements in Measuring Soil Thermal Properties. Soil Science Society of America Journal, 2018, 82, 1016-1016.	2.2	1
154	Summary of Advances in Heat-Pulse Methods: Measuring Near-Surface Soil Water Content. Soil Science Society of America Journal, 2018, 82, 1015-1015.	2.2	1
155	Summary of Thermo-Time Domain Reflectometry Method: Advances in Monitoring In Situ Soil Bulk Density. Soil Science Society of America Journal, 2018, 82, 733-733.	2.2	1
156	Temporal changes in soil hydraulic conductivity in saturated and unsaturated fields. Paddy and Water Environment, 2020, 18, 677-686.	1.8	1
157	Effect of Exposure Conditions and Internal Curing on Pore Water Potential Development in Cement-Based Materials. Transportation Research Record, 2021, 2675, 184-191.	1.9	1
158	Buried pipeline installation impacts on soil structure and crop root decomposition. Agricultural and Environmental Letters, 2022, 7, .	1.2	1
159	A semi-analytical model for solute transport in layered dual-porosity media. Journal of Plant Nutrition and Soil Science, 2006, 169, 754-761.	1.9	O
160	Response to "Comments on â€~Integral Method for Estimating Soil Hydraulic Properties' by Hu (2015)― Soil Science Society of America Journal, 2015, 79, 970-971.	2.2	0
161	The Response of the HydroGeoSphere Model to Alternative Spatial Precipitation Simulation Methods. Water (Switzerland), 2021, 13, 1891.	2.7	O