Giordano Liberi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8693824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. Nucleic Acids Research, 2021, 49, 12769-12784.	14.5	28
2	Senataxin Ortholog Sen1 Limits DNA:RNA Hybrid Accumulation at DNA Double-Strand Breaks to Control End Resection and Repair Fidelity. Cell Reports, 2020, 31, 107603.	6.4	35
3	The dark side of RNA:DNA hybrids. Mutation Research - Reviews in Mutation Research, 2020, 784, 108300.	5.5	37
4	2D Gel Electrophoresis to Detect DNA Replication and Recombination Intermediates in Budding Yeast. Methods in Molecular Biology, 2020, 2119, 43-59.	0.9	2
5	Regulation of DNA Double Strand Breaks Processing: Focus on Barriers. Frontiers in Molecular Biosciences, 2019, 6, 55.	3.5	47
6	Bi-allelic TARS Mutations Are Associated with Brittle Hair Phenotype. American Journal of Human Genetics, 2019, 105, 434-440.	6.2	42
7	Dormant origins and fork protection mechanisms rescue sister forks arrested by transcription. Nucleic Acids Research, 2018, 46, 1227-1239.	14.5	32
8	Replication and transcription on a collision course: eukaryotic regulation mechanisms and implications for DNA stability. Frontiers in Genetics, 2015, 6, 166.	2.3	41
9	Mechanisms coordinating replication and transcription (236.2). FASEB Journal, 2014, 28, 236.2.	0.5	0
10	Senataxin Associates with Replication Forks to Protect Fork Integrity across RNA-Polymerase-II-Transcribed Genes. Cell, 2012, 151, 835-846.	28.9	204
11	Mitotic inter-homologue junctions accumulate at damaged DNA replication forks in recQ mutants. DNA Repair, 2010, 9, 661-669.	2.8	9
12	Cdk1 Targets Srs2 to Complete Synthesis-Dependent Strand Annealing and to Promote Recombinational Repair. PLoS Genetics, 2010, 6, e1000858.	3.5	70
13	The double life of Holliday junctions. Cell Research, 2010, 20, 611-613.	12.0	9
14	SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nature Structural and Molecular Biology, 2009, 16, 159-167.	8.2	89
15	Role of homologous recombination in trabectedin-induced DNA damage. European Journal of Cancer, 2008, 44, 609-618.	2.8	95
16	<i>Cryptococcus neoformans</i> Typing by PCR Fingerprinting Using (GACA) ₄ Primers Based on <i>C. neoformans</i> Genome Project Data. Journal of Clinical Microbiology, 2007, 45, 3427-3430.	3.9	6
17	Identification of Mutations That Decrease the Stability of a Fragment of <i>Saccharomyces cerevisiae</i> Chromosome <i>III</i> Lacking Efficient Replicators. Genetics, 2007, 177, 1445-1458.	2.9	9
18	The Human F-Box DNA Helicase FBH1 Faces <i>Saccharomyces cerevisiae</i> Srs2 and Postreplication Repair Pathway Roles. Molecular and Cellular Biology, 2007, 27, 7439-7450.	2.3	53

GIORDANO LIBERI

#	Article	IF	CITATION
19	Ubc9- and Mms21-Mediated Sumoylation Counteracts Recombinogenic Events atÂDamaged Replication Forks. Cell, 2006, 127, 509-522.	28.9	266
20	Methods to Study Replication Fork Collapse in Budding Yeast. Methods in Enzymology, 2006, 409, 442-462.	1.0	37
21	Srs2 and Sgs1 DNA Helicases Associate with Mre11 in Different Subcomplexes following Checkpoint Activation and CDK1-Mediated Srs2 Phosphorylation. Molecular and Cellular Biology, 2005, 25, 5738-5751.	2.3	80
22	Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes and Development, 2005, 19, 339-350.	5.9	287
23	Checkpoint-mediated control of replisome–fork association and signalling in response to replication pausing. Oncogene, 2004, 23, 1206-1213.	5.9	147
24	DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature, 2004, 431, 1011-1017.	27.8	641
25	Initiation of DNA Replication. Cell, 2004, 116, 3-4.	28.9	5
26	Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast. Cell, 2003, 115, 401-411.	28.9	539
27	Branch Migrating Sister Chromatid Junctions Form at Replication Origins through Rad51/Rad52-Independent Mechanisms. Molecular Cell, 2003, 12, 1499-1510.	9.7	107
28	Mechanisms Controlling the Integrity of Replicating Chromosomes in Budding Yeast. Cell Cycle, 2003, 2, 563-566.	2.6	12
29	Budding Yeast DNA Damage Checkpoint: A Signal Transduction-Mediated Surveillance System. , 2003, , 197-202.		1
30	A dominant-negative MEC3 mutant uncovers new functions for the Rad17 complex and Tel1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12997-13002.	7.1	13
31	Recovery from Checkpoint-Mediated Arrest after Repair of a Double-Strand Break Requires Srs2 Helicase. Molecular Cell, 2002, 10, 373-385.	9.7	310
32	Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways. International Journal of Cancer, 2001, 92, 583-588.	5.1	155
33	The DNA replication checkpoint response stabilizes stalled replication forks. Nature, 2001, 412, 557-561.	27.8	693
34	DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 451, 187-196.	1.0	110
35	Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO Journal, 1999, 18, 6561-6572.	7.8	354