
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8693193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy and Environmental Science, 2017, 10, 402-434.	30.8	820
2	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	38.1	810
3	Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015, 18, 155-162.	14.2	609
4	High-Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots-Sensitized TiO ₂ Nanotube Arrays. Journal of the American Chemical Society, 2012, 134, 15720-15723.	13.7	571
5	p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy and Environmental Science, 2013, 6, 1211.	30.8	483
6	Inorganic-modified semiconductor TiO ₂ nanotube arrays for photocatalysis. Energy and Environmental Science, 2014, 7, 2182-2202.	30.8	461
7	Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 8428-8469.	38.1	452
8	Graphene aerogels for efficient energy storage and conversion. Energy and Environmental Science, 2018, 11, 772-799.	30.8	435
9	Low ost Copper Zinc Tin Sulfide Counter Electrodes for Highâ€Efficiency Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 11739-11742.	13.8	410
10	Towards high-performance polymer-based thermoelectric materials. Energy and Environmental Science, 2013, 6, 1352.	30.8	408
11	Learning from "Coffee Ringsâ€: Ordered Structures Enabled by Controlled Evaporative Selfâ€Assembly. Angewandte Chemie - International Edition, 2012, 51, 1534-1546.	13.8	404
12	Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 2016, 22, 278-289.	16.0	382
13	A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nature Nanotechnology, 2013, 8, 426-431.	31.5	362
14	Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8, 16045.	12.8	359
15	Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy and Environmental Science, 2012, 5, 8351.	30.8	351
16	High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes. Nano Letters, 2011, 11, 3214-3220.	9.1	337
17	A Rapid Microwaveâ€Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation. Angewandte Chemie - International Edition, 2016, 55, 14693-14697.	13.8	335
18	Leadâ€Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties. Angewandte Chemie - International Edition, 2020, 59, 1030-1046.	13.8	320

#	Article	IF	CITATIONS
19	1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science, 2016, 353, 1268-1272.	12.6	316
20	A review of TiO 2 nanostructured catalysts for sustainable H 2 generation. International Journal of Hydrogen Energy, 2017, 42, 8418-8449.	7.1	309
21	Freestanding TiO ₂ Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization. Chemistry of Materials, 2008, 20, 1257-1261.	6.7	286
22	Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical Society Reviews, 2020, 49, 4953-5007.	38.1	269
23	Dye-Sensitized TiO ₂ Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering. Chemistry of Materials, 2010, 22, 579-584.	6.7	265
24	Polymerâ€Templated Formation of Polydopamineâ€Coated SnO ₂ Nanocrystals: Anodes for Cyclable Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 1869-1872.	13.8	260
25	Hierarchical structure formation and pattern replication induced by an electric field. Nature Materials, 2003, 2, 48-52.	27.5	258
26	Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 4280-4284.	13.8	257
27	Robust SnO _{2â^'<i>x</i>} Nanoparticleâ€Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 8901-8905.	13.8	252
28	Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chemical Society Reviews, 2019, 48, 1194-1228.	38.1	250
29	Shape Memory Polymers for Body Motion Energy Harvesting and Selfâ€Powered Mechanosensing. Advanced Materials, 2018, 30, 1705195.	21.0	249
30	Self-Assembly of Gradient Concentric Rings via Solvent Evaporation from a Capillary Bridge. Physical Review Letters, 2006, 96, 066104.	7.8	248
31	Anodic Formation of Ordered TiO ₂ Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential. Journal of Physical Chemistry C, 2009, 113, 4026-4030.	3.1	246
32	High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction. Journal of Materials Chemistry A, 2014, 2, 5994-6003.	10.3	246
33	Crafting Musselâ€Inspired Metal Nanoparticleâ€Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources. Advanced Materials, 2019, 31, e1806314.	21.0	239
34	A Rapid Microwaveâ€Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation. Angewandte Chemie, 2016, 128, 14913-14917.	2.0	234
35	Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. Angewandte Chemie - International Edition, 2019, 58, 7526-7536.	13.8	234
36	Plasmonâ€Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites. Advanced Science, 2016, 3, 1600024.	11.2	222

#	Article	IF	CITATIONS
37	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	31.8	221
38	Organicâ^'Inorganic Nanocomposites via Directly Grafting Conjugated Polymers onto Quantum Dots. Journal of the American Chemical Society, 2007, 129, 12828-12833.	13.7	216
39	Evaporation-Induced Self-Assembly of Nanoparticles from a Sphere-on-Flat Geometry. Angewandte Chemie - International Edition, 2007, 46, 1860-1863.	13.8	212
40	Highly Branched Metal Alloy Networks with Superior Activities for the Methanol Oxidation Reaction. Angewandte Chemie - International Edition, 2017, 56, 4488-4493.	13.8	210
41	Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy, 2018, 50, 212-219.	16.0	205
42	Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contactâ€Electrification. Advanced Materials, 2018, 30, e1803968.	21.0	199
43	Achieving Efficient Incorporation of ï€â€Electrons into Graphitic Carbon Nitride for Markedly Improved Hydrogen Generation. Angewandte Chemie - International Edition, 2019, 58, 1985-1989.	13.8	199
44	One-Step Formation of Functionalized Block Copolymers. Macromolecules, 2000, 33, 1505-1507.	4.8	192
45	<i>In-Situ</i> Crafting of ZnFe ₂ O ₄ Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials. ACS Nano, 2016, 10, 2728-2735.	14.6	192
46	A highly stable non-noble metal Ni ₂ P co-catalyst for increased H ₂ generation by g-C ₃ N ₄ under visible light irradiation. Journal of Materials Chemistry A, 2017, 5, 8493-8498.	10.3	190
47	Durable and Efficient Hollow Porous Oxide Spinel Microspheres for Oxygen Reduction. Joule, 2018, 2, 337-348.	24.0	189
48	Electric field induced instabilities at liquid/liquid interfaces. Journal of Chemical Physics, 2001, 114, 2377-2381.	3.0	184
49	Grapheneâ€Containing Nanomaterials for Lithiumâ€ŀon Batteries. Advanced Energy Materials, 2015, 5, 1500400.	19.5	184
50	Hierarchically Structured Nanotubes for Highly Efficient Dyeâ€ S ensitized Solar Cells. Advanced Materials, 2013, 25, 3039-3044.	21.0	182
51	Novel Amphiphilic Multi-Arm, Star-Like Block Copolymers as Unimolecular Micelles. Macromolecules, 2011, 44, 3746-3752.	4.8	181
52	Strictly Biphasic Soft and Hard Janus Structures: Synthesis, Properties, and Applications. Angewandte Chemie - International Edition, 2014, 53, 5524-5538.	13.8	178
53	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie - International Edition, 2019, 58, 2397-2401.	13.8	178
54	A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy, 2016, 21, 133-144.	16.0	168

#	Article	IF	CITATIONS
55	Recent Advances in Siliconâ€Based Electrodes: From Fundamental Research toward Practical Applications. Advanced Materials, 2021, 33, e2004577.	21.0	168
56	Germaniumâ€Based Nanomaterials for Rechargeable Batteries. Angewandte Chemie - International Edition, 2016, 55, 7898-7922.	13.8	162
57	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 15476-15480.	13.8	162
58	Self-Assembly of All-Conjugated Poly(3-alkylthiophene) Diblock Copolymer Nanostructures from Mixed Selective Solvents. ACS Nano, 2010, 4, 3241-3247.	14.6	157
59	Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy, 2020, 77, 105080.	16.0	157
60	Scrutinizing Defects and Defect Density of Seleniumâ€Doped Graphene for Highâ€Efficiency Triiodide Reduction in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 4682-4686.	13.8	155
61	Patterns Formed by Droplet Evaporation from a Restricted Geometry. Journal of the American Chemical Society, 2005, 127, 2816-2817.	13.7	154
62	Structure Formation at the Interface of Liquid/Liquid Bilayer in Electric Field. Macromolecules, 2002, 35, 3971-3976.	4.8	151
63	Grapheneâ€Enabled Superior and Tunable Photomechanical Actuation in Liquid Crystalline Elastomer Nanocomposites. Advanced Materials, 2015, 27, 6376-6381.	21.0	149
64	NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 17057-17066.	10.3	149
65	Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020, 70, 104525.	16.0	143
66	Graphene and graphene-based nanocomposites: biomedical applications and biosafety. Journal of Materials Chemistry B, 2016, 4, 7813-7831.	5.8	140
67	The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chemical Society Reviews, 2019, 48, 4854-4891.	38.1	139
68	From Precision Synthesis of Block Copolymers to Properties and Applications of Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 2046-2070.	13.8	138
69	Hybrid Organic–Inorganic Thermoelectric Materials and Devices. Angewandte Chemie - International Edition, 2019, 58, 15206-15226.	13.8	138
70	Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Progress in Polymer Science, 2021, 116, 101387.	24.7	138
71	Carbon/Sulfur Aerogel with Adequate Mesoporous Channels as Robust Polysulfide Confinement Matrix for Highly Stable Lithium–Sulfur Battery. Nano Letters, 2020, 20, 7662-7669.	9.1	131
72	Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002.	2.8	129

#	Article	IF	CITATIONS
73	Crafting Semiconductor Organicâ^'Inorganic Nanocomposites via Placing Conjugated Polymers in Intimate Contact with Nanocrystals for Hybrid Solar Cells. Advanced Materials, 2012, 24, 4353-4368.	21.0	127
74	Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomaterialia, 2008, 4, 1401-1410.	8.3	125
75	Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO ₂ Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors. Small, 2017, 13, 1604240.	10.0	125
76	Mobility of Polymers at the Air/Polymer Interface. Macromolecules, 2001, 34, 3484-3492.	4.8	123
77	Cascade charge transfer enabled by incorporating edge-enriched graphene nanoribbons for mesostructured perovskite solar cells with enhanced performance. Nano Energy, 2018, 52, 123-133.	16.0	123
78	Robust wrinkled MoS ₂ /N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	122
79	Nanostructured photocatalysts for nitrogen fixation. Nano Energy, 2020, 71, 104645.	16.0	120
80	Conjugated rod–coil and rod–rod block copolymers for photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 17039.	6.7	119
81	Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs. Advanced Materials, 2019, 31, e1901602.	21.0	119
82	Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Science Advances, 2019, 5, eaax4424.	10.3	116
83	Hierarchical Rutile TiO ₂ Flower Clusterâ€Based High Efficiency Dyeâ€Sensitized Solar Cells via Direct Hydrothermal Growth on Conducting Substrates. Small, 2013, 9, 312-321.	10.0	115
84	Simultaneously Crafting Singleâ€Atomic Fe Sites and Graphitic Layerâ€Wrapped Fe ₃ C Nanoparticles Encapsulated within Mesoporous Carbon Tubes for Oxygen Reduction. Advanced Functional Materials, 2021, 31, 2009197.	14.9	112
85	Organic–Inorganic Nanocomposites via Placing Monodisperse Ferroelectric Nanocrystals in Direct and Permanent Contact with Ferroelectric Polymers. Journal of the American Chemical Society, 2015, 137, 11760-11767.	13.7	111
86	Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy, 2015, 12, 314-321.	16.0	108
87	Interconnected Ni(HCO ₃) ₂ Hollow Spheres Enabled by Self-Sacrificial Templating with Enhanced Lithium Storage Properties. ACS Energy Letters, 2017, 2, 111-116.	17.4	108
88	Advanced Matrixes for Binderâ€Free Nanostructured Electrodes in Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1908445.	21.0	108
89	Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2005888.	21.0	108
90	Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 12956-12967.	13.7	107

#	Article	IF	CITATIONS
91	<i>Operando</i> unraveling photothermal-promoted dynamic active-sites generation in NiFe ₂ O ₄ for markedly enhanced oxygen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	107
92	Metal–organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Nano Energy, 2021, 86, 106073.	16.0	107
93	Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1391-E1400.	7.1	106
94	Upconversion Nanocrystals: Synthesis, Properties, Assembly and Applications. Science of Advanced Materials, 2011, 3, 26-40.	0.7	106
95	Unconventional Route to Oxygenâ€Vacancyâ€Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 1611-1618.	13.8	104
96	Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for High‣fficiency Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000999.	21.0	104
97	General and Robust Photothermalâ€Heatingâ€Enabled Highâ€Efficiency Photoelectrochemical Water Splitting. Advanced Materials, 2021, 33, e2004406.	21.0	104
98	Chemical Imaging in a Surface Forces Apparatus:Â Confocal Raman Spectroscopy of Confined Poly(dimethylsiloxane). Langmuir, 2005, 21, 5685-5688.	3.5	103
99	Graphene-based transparent flexible electrodes for polymer solar cells. Journal of Materials Chemistry, 2012, 22, 24254.	6.7	103
100	Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 14797-14804.	10.3	103
101	Formation of various TiO2 nanostructures from electrochemically anodized titanium. Journal of Materials Chemistry, 2009, 19, 3682.	6.7	102
102	Recent advances in polysaccharideâ€based hydrogels for synthesis and applications. Aggregate, 2021, 2, e21.	9.9	102
103	Hierarchically Organized Structures Engineered from Controlled Evaporative Self-Assembly. Nano Letters, 2010, 10, 3111-3117.	9.1	101
104	Electric Field Induced Dewetting at Polymer/Polymer Interfaces. Macromolecules, 2002, 35, 6255-6262.	4.8	100
105	All-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells with controlled molecular organization and nanoscale morphology. Energy and Environmental Science, 2011, 4, 2894.	30.8	100
106	Plasmonic dye-sensitized solar cells incorporated with Au–TiO ₂ nanostructures with tailored configurations. Nanoscale, 2014, 6, 1823-1832.	5.6	100
107	Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy, 2020, 78, 105313.	16.0	100
108	A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy, 2021, 79, 105487.	16.0	99

#	Article	IF	CITATIONS
109	Dual-Shelled Multidoped Hollow Carbon Nanocages with Hierarchical Porosity for High-Performance Oxygen Reduction Reaction in Both Alkaline and Acidic Media. Nano Letters, 2020, 20, 5639-5645.	9.1	98
110	Robust Selfâ€Assembly of Highly Ordered Complex Structures by Controlled Evaporation of Confined Microfluids. Angewandte Chemie - International Edition, 2009, 48, 512-516.	13.8	96
111	Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics. Nanoscale, 2011, 3, 3040.	5.6	95
112	A Versatile Strategy for Shish-Kebab-like Multi-heterostructured Chalcogenides and Enhanced Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2015, 137, 11004-11010.	13.7	95
113	Largeâ€Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Advanced Optical Materials, 2018, 6, 1800474.	7.3	95
114	Rechargeable Zn–Air Batteries with Outstanding Cycling Stability Enabled by Ultrafine FeNi Nanoparticles-Encapsulated N-Doped Carbon Nanosheets as a Bifunctional Electrocatalyst. Nano Letters, 2021, 21, 3098-3105.	9.1	95
115	A Robust Route to Co ₂ (OH) ₂ CO ₃ Ultrathin Nanosheets with Superior Lithium Storage Capability Templated by Aspartic Acidâ€Functionalized Graphene Oxide. Advanced Energy Materials, 2019, 9, 1901093.	19.5	94
116	Vertically-aligned Pt-decorated MoS2 nanosheets coated on TiO2 nanotube arrays enable high-efficiency solar-light energy utilization for photocatalysis and self-cleaning SERS devices. Nano Energy, 2020, 71, 104579.	16.0	92
117	Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications. Chemical Society Reviews, 2021, 50, 6914-6949.	38.1	91
118	General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. , 2022, 1, 138-146.		91
119	Crafting Threads of Diblock Copolymer Micelles <i>via</i> Flow-Enabled Self-Assembly. ACS Nano, 2014, 8, 2936-2942.	14.6	89
120	Surface-Treated TiO ₂ Nanoparticles for Dye-Sensitized Solar Cells with Remarkably Enhanced Performance. Langmuir, 2011, 27, 14594-14598.	3.5	88
121	Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon, 2018, 140, 296-305.	10.3	88
122	Novel Amphiphilic Multiarm, Starlike Coil–Rod Diblock Copolymers via a Combination of Click Chemistry with Living Polymerization. Macromolecules, 2011, 44, 7176-7183.	4.8	86
123	Oneâ€Dimensional Densely Aligned Perovskiteâ€Decorated Semiconductor Heterojunctions with Enhanced Photocatalytic Activity. Small, 2015, 11, 1436-1442.	10.0	86
124	Organicâ^'Inorganic Nanocomposites by Placing Conjugated Polymers in Intimate Contact with Quantum Rods. Advanced Materials, 2011, 23, 2844-2849.	21.0	85
125	Toward High-Performance Organic–Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact. Journal of Physical Chemistry Letters, 2013, 4, 1788-1796.	4.6	85
126	Nonepitaxial growth of uniform and precisely size-tunable core/shell nanoparticles and their enhanced plasmon-driven photocatalysis. Journal of Materials Chemistry A, 2016, 4, 7190-7199.	10.3	85

#	Article	IF	CITATIONS
127	A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A, 2017, 5, 18888-18895.	10.3	85
128	All-Inorganic Perovskite Nanocrystals with a Stellar Set of Stabilities and Their Use in White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 37267-37276.	8.0	82
129	Resolving Optical and Catalytic Activities in Thermoresponsive Nanoparticles by Permanent Ligation with Temperature ensitive Polymers. Angewandte Chemie - International Edition, 2019, 58, 11910-11917.	13.8	80
130	Largeâ€ S cale Hierarchically Structured Conjugated Polymer Assemblies with Enhanced Electrical Conductivity. Angewandte Chemie - International Edition, 2013, 52, 2564-2568.	13.8	79
131	Semiconductor Anisotropic Nanocomposites Obtained by Directly Coupling Conjugated Polymers with Quantum Rods. Angewandte Chemie - International Edition, 2011, 50, 3958-3962.	13.8	78
132	Li-ion and Na-ion transportation and storage properties in various sized TiO ₂ spheres with hierarchical pores and high tap density. Journal of Materials Chemistry A, 2017, 5, 4359-4367.	10.3	78
133	Contact-Electrification between Two Identical Materials: Curvature Effect. ACS Nano, 2019, 13, 2034-2041.	14.6	78
134	Directed Selfâ€Assembly of Gradient Concentric Carbon Nanotube Rings. Advanced Functional Materials, 2008, 18, 2114-2122.	14.9	77
135	Unconventional Route to Hairy Plasmonic/Semiconductor Core/Shell Nanoparticles with Precisely Controlled Dimensions and Their Use in Solar Energy Conversion. Chemistry of Materials, 2015, 27, 5271-5278.	6.7	76
136	Atomic layer deposition-enabled ultrastable freestanding carbon-selenium cathodes with high mass loading for sodium-selenium battery. Nano Energy, 2018, 43, 317-325.	16.0	76
137	Semiconductor Conjugated Polymerâ~'Quantum Dot Nanocomposites at the Air/Water Interface and Their Photovoltaic Performance. Chemistry of Materials, 2009, 21, 934-938.	6.7	75
138	Drying Mediated Pattern Formation in a Capillary-Held Organometallic Polymer Solution. Chemistry of Materials, 2005, 17, 6223-6226.	6.7	72
139	Multifunctional PMMA-Ceramic composites as structural dielectrics. Polymer, 2010, 51, 5823-5832.	3.8	72
140	Controlled evaporative self-assembly of hierarchically structured regioregular conjugated polymers. Soft Matter, 2009, 5, 1583.	2.7	71
141	Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. Journal of Materials Chemistry A, 2015, 3, 13340-13349.	10.3	71
142	Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 4352-4356.	2.0	71
143	SnO ₂ as Advanced Anode of Alkaliâ€lon Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility. Advanced Energy Materials, 2020, 10, 1902657.	19.5	71
144	Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy, 2020, 77, 105104.	16.0	71

#	Article	IF	CITATIONS
145	Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance. Advanced Materials, 2020, 32, e1906457.	21.0	71
146	Dye-sensitized solar cells based on a nanoparticle/nanotube bilayer structure and their equivalent circuit analysis. Nanoscale, 2012, 4, 964-969.	5.6	70
147	Polar Organic Solvent-Tolerant Perovskite Nanocrystals Permanently Ligated with Polymer Hairs via Star-like Molecular Bottlebrush Trilobe Nanoreactors. Nano Letters, 2019, 19, 9019-9028.	9.1	70
148	Precisely Size‶unable Magnetic/Plasmonic Core/Shell Nanoparticles with Controlled Optical Properties. Angewandte Chemie - International Edition, 2015, 54, 12091-12096.	13.8	69
149	A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish. Science Advances, 2015, 1, e1500025.	10.3	69
150	Robust Molecular Dipoleâ€Enabled Defect Passivation and Control of Energyâ€Level Alignment for Highâ€Efficiency Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 17664-17670.	13.8	69
151	Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chemical Society Reviews, 2021, 50, 13646-13691.	38.1	69
152	Precisely Sizeâ€Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Starâ€Like Block Copolymers. Small, 2016, 12, 6714-6723.	10.0	68
153	Vertically aligned VS ₂ on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage. Journal of Materials Chemistry A, 2020, 8, 5882-5889.	10.3	68
154	Hierarchically porous CuO nano-labyrinths as binder-free anodes for long-life and high-rate lithium ion batteries. Nano Energy, 2019, 59, 229-236.	16.0	67
155	Template-Assisted Formation of Gradient Concentric Gold Rings. Nano Letters, 2006, 6, 2949-2954.	9.1	66
156	Multifunctional fiberglass-reinforced PMMA-BaTiO3 structural/dielectric composites. Polymer, 2011, 52, 2016-2024.	3.8	65
157	Flowâ€Enabled Selfâ€Assembly of Largeâ€Scale Aligned Nanowires. Angewandte Chemie - International Edition, 2015, 54, 4250-4254.	13.8	65
158	Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy, 2020, 77, 105165.	16.0	65
159	Drying-Mediated Assembly of Colloidal Nanoparticles into Large-Scale Microchannels. ACS Nano, 2013, 7, 6079-6085.	14.6	64
160	Novel blue-emitting carboxyl-functionalized poly(arylene ether nitrile)s with excellent thermal and mechanical properties. Polymer Chemistry, 2014, 5, 3673.	3.9	64
161	Macroscopic Highly Aligned DNA Nanowires Created by Controlled Evaporative Self-Assembly. ACS Nano, 2013, 7, 4326-4333.	14.6	63
162	Hierarchically Structured Microspheres for High-Efficiency Rutile TiO ₂ -Based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 2893-2901.	8.0	63

#	Article	IF	CITATIONS
163	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie, 2018, 130, 15702-15706.	2.0	63
164	Tailoring carrier dynamics in perovskite solar cells <i>via</i> precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy and Environmental Science, 2020, 13, 1743-1752.	30.8	63
165	Substrate- and Time-Dependent Photoluminescence of Quantum Dots Inside the Ultrathin Polymer LbL Film. Langmuir, 2007, 23, 4509-4515.	3.5	62
166	A simple biphasic route to water soluble dithiocarbamate functionalized quantum dots. Journal of Materials Chemistry, 2008, 18, 3270.	6.7	62
167	Assembling and positioning latex nanoparticles via controlled evaporative self-assembly. Journal of Materials Chemistry, 2011, 21, 16968.	6.7	62
168	Organic–Inorganic Nanohybrids through the Direct Tailoring of Semiconductor Nanocrystals with Conjugated Polymers. Chemistry - A European Journal, 2008, 14, 6294-6301.	3.3	61
169	Lightâ€Driven Shapeâ€Memory Porous Films with Precisely Controlled Dimensions. Angewandte Chemie - International Edition, 2018, 57, 2139-2143.	13.8	61
170	Evolution of Ordered Block Copolymer Serpentines into a Macroscopic, Hierarchically Ordered Web. Angewandte Chemie - International Edition, 2009, 48, 8356-8360.	13.8	60
171	Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS Nano, 2020, 14, 12491-12521.	14.6	59
172	Simple route to interconnected, hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layer for efficient perovskite solar cells. Nano Energy, 2020, 71, 104620.	16.0	59
173	A Robust Highly Aligned DNA Nanowire Array-Enabled Lithography for Graphene Nanoribbon Transistors. Nano Letters, 2015, 15, 7913-7920.	9.1	58
174	Recycling and recovery of perovskite solar cells. Materials Today, 2021, 43, 185-197.	14.2	58
175	Photo-activated bimorph composites of Kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of <i>Albizia julibrissin</i> leaves. Journal of Materials Chemistry C, 2019, 7, 622-629.	5.5	57
176	An Unconventional Route to Hierarchically Ordered Block Copolymers on a Gradient Patterned Surface through Controlled Evaporative Selfâ€Assembly. Angewandte Chemie - International Edition, 2013, 52, 1122-1127.	13.8	56
177	Garden-like perovskite superstructures with enhanced photocatalytic activity. Nanoscale, 2014, 6, 3576.	5.6	56
178	Polymers in Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2103798.	11.2	56
179	Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells. Nanoscale, 2011, 3, 3159.	5.6	55
180	Dyeâ€Sensitized TiO ₂ Nanotube Solar Cells: Rational Structural and Surface Engineering on TiO ₂ Nanotubes. Chemistry - an Asian Journal, 2012, 7, 2754-2762.	3.3	54

#	Article	IF	CITATIONS
181	Block copolymer/ferroelectric nanoparticle nanocomposites. Nanoscale, 2013, 5, 8695.	5.6	54
182	Partially Crystalline Zn ₂ GeO ₄ Nanorod/Graphene Composites as Anode Materials for High Performance Lithium Ion Batteries. Langmuir, 2014, 30, 8215-8220.	3.5	54
183	An Unconventional Route to Monodisperse and Intimately Contacted Semiconducting Organic–Inorganic Nanocomposites. Angewandte Chemie - International Edition, 2015, 54, 4636-4640.	13.8	54
184	Evaporative Organization of Hierarchically Structured Polymer Blend Rings. Macromolecules, 2008, 41, 9312-9317.	4.8	53
185	Active sites-enriched carbon matrix enables efficient triiodide reduction in dye-sensitized solar cells: An understanding of the active centers. Nano Energy, 2018, 54, 138-147.	16.0	52
186	Strongly-ligated perovskite quantum dots with precisely controlled dimensions and architectures for white light-emitting diodes. Nano Energy, 2020, 77, 105043.	16.0	52
187	Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews, 2022, 122, 4091-4162.	47.7	52
188	Large Polarization of Li ₄ Ti ₅ O ₁₂ Lithiated to 0 V at Large Charge/Discharge Rates. ACS Applied Materials & Interfaces, 2016, 8, 18788-18796.	8.0	51
189	Achieving Efficient Incorporation of Ï€â€Electrons into Graphitic Carbon Nitride for Markedly Improved Hydrogen Generation. Angewandte Chemie, 2019, 131, 2007-2011.	2.0	51
190	A Simple Route to Hierarchically Assembled Micelles and Inorganic Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 12588-12592.	13.8	50
191	Robust SnO _{2â^'<i>x</i>} Nanoparticleâ€Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodiumâ€Ion Batteries. Angewandte Chemie, 2018, 130, 9039-9043.	2.0	50
192	Mesoscale Patterns Formed by Evaporation of a Polymer Solution in the Proximity of a Sphere on a Smooth Substrate:Â Molecular Weight and Curvature Effects. Macromolecules, 2007, 40, 2831-2836.	4.8	49
193	CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance. Nanoscale, 2014, 6, 8350.	5.6	49
194	Lithium-Conducting Branched Polymers: New Paradigm of Solid-State Electrolytes for Batteries. Nano Letters, 2021, 21, 7435-7447.	9.1	47
195	Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains. ACS Photonics, 2016, 3, 647-658.	6.6	45
196	Dualâ€Protected Metal Halide Perovskite Nanosheets with an Enhanced Set of Stabilities. Angewandte Chemie - International Edition, 2021, 60, 7259-7266.	13.8	45
197	Quantum dots confined in nanoporous alumina membranes. Applied Physics Letters, 2006, 89, 133110.	3.3	44
198	Photoluminescence of a Freely Suspended Monolayer of Quantum Dots Encapsulated into Layer-by-Layer Films. Langmuir, 2007, 23, 10176-10183.	3.5	44

#	Article	IF	CITATIONS
199	Self-Assembling Semicrystalline Polymer into Highly Ordered, Microscopic Concentric Rings by Evaporation. Langmuir, 2008, 24, 3525-3531.	3.5	44
200	A versatile strategy for uniform hybrid nanoparticles and nanocapsules. Polymer Chemistry, 2015, 6, 5190-5197.	3.9	43
201	Simple Route to Gradient Concentric Metal and Metal Oxide Rings. Chemistry of Materials, 2006, 18, 5164-5166.	6.7	42
202	Robust Route to Unimolecular Core–Shell and Hollow Polymer Nanoparticles. Chemistry of Materials, 2014, 26, 6058-6067.	6.7	42
203	Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells. Nanoscale, 2014, 6, 3984.	5.6	42
204	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie - International Edition, 2016, 55, 5071-5075.	13.8	42
205	Unraveling Temperatureâ€Dependent Contact Electrification between Slidingâ€Mode Triboelectric Pairs. Advanced Functional Materials, 2020, 30, 1909384.	14.9	42
206	Early Stages in the Growth of Electric Field-Induced Surface Fluctuations. Macromolecules, 2005, 38, 4868-4873.	4.8	41
207	Iterative control approach to high-speed force-distance curve measurement using AFM: Time-dependent response of PDMS example. Ultramicroscopy, 2008, 108, 911-920.	1.9	41
208	Effect of casting solvent on crystallinity of ondansetron in transdermal films. International Journal of Pharmaceutics, 2011, 406, 106-110.	5.2	41
209	Fibrous and flexible supercapacitors comprising hierarchical nanostructures with carbon spheres and graphene oxide nanosheets. Journal of Materials Chemistry A, 2015, 3, 12761-12768.	10.3	41
210	Quaterthiophene–Benzobisazole Copolymers for Photovoltaic Cells: Effect of Heteroatom Placement and Substitution on the Optical and Electronic Properties. Macromolecules, 2011, 44, 9611-9617.	4.8	40
211	Highly Branched Metal Alloy Networks with Superior Activities for the Methanol Oxidation Reaction. Angewandte Chemie, 2017, 129, 4559-4564.	2.0	40
212	Synthesis and characterization of perovskite PbTiO3 nanoparticles with solution processability. Journal of Materials Chemistry, 2010, 20, 5945.	6.7	39
213	Hierarchically Ordered Structures Enabled by Controlled Evaporative Selfâ€Assembly. Small, 2010, 6, 2250-2255.	10.0	38
214	Semiconducting Conjugated Polymer–Inorganic Tetrapod Nanocomposites. Langmuir, 2013, 29, 8086-8092.	3.5	38
215	Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly. Angewandte Chemie - International Edition, 2017, 56, 4554-4559.	13.8	38
216	Polystyreneâ^'Polylactide Bottlebrush Block Copolymer at the Air/Water Interface. Macromolecules, 2009, 42, 9027-9033.	4.8	37

#	Article	IF	CITATIONS
217	Oxygen Vacancy Engineering in Tin(IV) Oxide Based Anode Materials toward Advanced Sodiumâ€lon Batteries. ChemSusChem, 2018, 11, 3693-3703.	6.8	37
218	Self-Assembly of CdTe Tetrapods into Network Monolayers at the Air/Water Interface. ACS Nano, 2010, 4, 2043-2050.	14.6	36
219	Anode Photovoltage Compensationâ€Enabled Synergistic CO ₂ Photoelectrocatalytic Reduction on a Flowerâ€Like Grapheneâ€Decorated Cu Foam Cathode. Advanced Functional Materials, 2020, 30, 2005983.	14.9	36
220	Rapid Capillaryâ€Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angewandte Chemie - International Edition, 2020, 59, 14942-14949.	13.8	36
221	Chain engineering of carbonyl polymers for sustainable lithium-ion batteries. Materials Today, 2021, 50, 170-198.	14.2	36
222	Core–shell Zn ₂ GeO ₄ nanorods and their size-dependent photoluminescence properties. Nanoscale, 2013, 5, 12335-12341.	5.6	35
223	Unravelling the Correlation between Charge Mobility and Cocrystallization in Rod–Rod Block Copolymers for Highâ€Performance Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2018, 57, 8644-8648.	13.8	35
224	Engineered "coffee-rings―of reduced graphene oxide as ultrathin contact guidance to enable patterning of living cells. Materials Horizons, 2019, 6, 1066-1079.	12.2	35
225	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	19.5	35
226	Self-assembly of non-linear polymers at the air/water interface: the effect of molecular architecture. Soft Matter, 2011, 7, 10520.	2.7	34
227	Self-assembly of 21-arm star-like diblock copolymer in bulk and under cylindrical confinement. Nanoscale, 2014, 6, 6844.	5.6	34
228	Unimolecular micelles composed of inner coil-like blocks and outer rod-like blocks crafted by combination of living polymerization with click chemistry. Polymer Chemistry, 2014, 5, 2747-2755.	3.9	34
229	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie - International Edition, 2017, 56, 12946-12951.	13.8	34
230	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie, 2019, 131, 2419-2423.	2.0	34
231	Unconventional Route to Oxygenâ€Vacancyâ€Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 1628-1635.	2.0	34
232	Advancing Performance and Unfolding Mechanism of Lithium and Sodium Storage in SnO ₂ via Precision Synthesis of Monodisperse PEGâ€Ligated Nanoparticles. Advanced Energy Materials, 2022, 12, .	19.5	34
233	Dual-functional semiconductor-decorated upconversion hollow spheres for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 23360-23367.	10.3	33
234	Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO ₂ Interface in Quantum Dot‣ensitized Solar Cells. Particle and Particle Systems Characterization, 2015, 32, 80-90.	2.3	33

#	Article	IF	CITATIONS
235	Enabling highly efficient photocatalytic hydrogen generation and organics degradation <i>via</i> a perovskite solar cell-assisted semiconducting nanocomposite photoanode. Journal of Materials Chemistry A, 2019, 7, 165-171.	10.3	33
236	Robust, Uniform, and Highly Emissive Quantum Dot–Polymer Films and Patterns Using Thiol–Ene Chemistry. ACS Applied Materials & Interfaces, 2017, 9, 17435-17448.	8.0	32
237	Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nature Communications, 2019, 10, 561.	12.8	32
238	Water treatment via non-membrane inorganic nanoparticles/cellulose composites. Materials Today, 2021, 50, 329-357.	14.2	32
239	Platinum Nanoparticles at Mica Surfaces. Langmuir, 2003, 19, 7061-7070.	3.5	31
240	A Simple Route to Reduced Graphene Oxideâ€Draped Nanocomposites with Markedly Enhanced Visibleâ€Light Photocatalytic Performance. Small, 2016, 12, 4077-4085.	10.0	31
241	Largeâ€Grained Perovskite Films Enabled by Oneâ€Step Meniscusâ€Assisted Solution Printing of Crossâ€Aligned Conductive Nanowires for Biodegradable Flexible Solar Cells. Advanced Energy Materials, 2020, 10, 2001185.	19.5	31
242	Sustainable Internal Electric Field for Enhanced Photocatalysis: From Material Design to Energy Utilization. Journal of Physical Chemistry Letters, 2020, 11, 7407-7416.	4.6	31
243	Controlled evaporative self-assembly of hierarchically structured bottlebrush block copolymer with nanochannels. Journal of Materials Chemistry, 2011, 21, 14248.	6.7	30
244	Functional copolymer brushes composed of a hydrophobic backbone and densely grafted conjugated side chains via a combination of living polymerization with click chemistry. Polymer Chemistry, 2013, 4, 2025.	3.9	30
245	Chemicalâ€Bondingâ€Directed Hierarchical Assembly of Nanoribbonâ€Shaped Nanocomposites of Cold Nanorods and Poly(3â€hexylthiophene). Angewandte Chemie - International Edition, 2016, 55, 8686-8690.	13.8	30
246	Robust, fluorescent, and nanoscale freestanding conjugated films. Soft Matter, 2007, 3, 432.	2.7	29
247	Anisotropic thermal transport in highly ordered TiO2 nanotube arrays. Journal of Applied Physics, 2009, 106, .	2.5	29
248	A facile route to the synthesis of reduced graphene oxide-wrapped octahedral Cu ₂ O with enhanced photocatalytic and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 19148-19154.	10.3	29
249	Tailoring Phase Transition in Poly(3-hexylselenophene) Thin Films and Correlating Their Crystalline Polymorphs with Charge Transport Properties for Organic Field-Effect Transistors. Macromolecules, 2017, 50, 9674-9682.	4.8	29
250	Convenient and Robust Route to Photoswitchable Hierarchical Liquid Crystal Polymer Stripes via Flow-Enabled Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 4961-4970.	8.0	29
251	Stimuli-responsive Janus mesoporous nanosheets towards robust interfacial emulsification and catalysis. Materials Horizons, 2020, 7, 3242-3249.	12.2	29
252	Organicâ€inorganic nanocomposites composed of conjugated polymers and semiconductor nanocrystals for photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1641-1660.	2.1	28

#	Article	IF	CITATIONS
253	Scrutinizing Defects and Defect Density of Seleniumâ€Doped Graphene for Highâ€Efficiency Triiodide Reduction in Dyeâ€Sensitized Solar Cells. Angewandte Chemie, 2018, 130, 4772-4776.	2.0	28
254	Multi-functional PEDOT-engineered sodium titanate nanowires for sodium–ion batteries with synchronous improvements in rate capability and structural stability. Journal of Materials Chemistry A, 2019, 7, 19241-19247.	10.3	28
255	Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. Angewandte Chemie, 2019, 131, 7606-7616.	2.0	28
256	Synthesis and Characterization of Fluorenediylvinylene and Thiophenediylvinylene-Containing Terphenylene-Based Copolymers. Macromolecules, 2002, 35, 9939-9946.	4.8	27
257	Largeâ€Area Multicolor Emissive Patterns of Quantum Dot–Polymer Films via Targeted Recovery of Emission Signature. Advanced Optical Materials, 2016, 4, 608-619.	7.3	27
258	Dynamic Chiroâ€Optics of Bioâ€Inorganic Nanomaterials via Seamless Coâ€Assembly of Semiconducting Nanorods and Polysaccharide Nanocrystals. Advanced Functional Materials, 2021, 31, 2104596.	14.9	27
259	Phase Separation of Polymer-Dispersed Liquid Crystals on a Chemically Patterned Substrate. Langmuir, 2007, 23, 7411-7415.	3.5	26
260	Massively ordered microstructures composed of magnetic nanoparticles. Journal of Physics Condensed Matter, 2009, 21, 264014.	1.8	26
261	Semiconductor hierarchically structured flower-like clusters for dye-sensitized solar cells with nearly 100% charge collection efficiency. Nanoscale, 2013, 5, 11220.	5.6	26
262	Polymerâ€Templated Formation of Polydopamineâ€Coated SnO ₂ Nanocrystals: Anodes for Cyclable Lithiumâ€lon Batteries. Angewandte Chemie, 2017, 129, 1895-1898.	2.0	26
263	Efficient interconnecting layers in monolithic all-perovskite tandem solar cells. Energy and Environmental Science, 2022, 15, 3152-3170.	30.8	26
264	Effect of Förster Energy Transfer and Hole Transport Layer on Performance of Polymer Light-Emitting Diodes. Macromolecules, 2001, 34, 9183-9188.	4.8	25
265	Phase Separation Kinetics of Polymer Dispersed Liquid Crystals Confined between Two Parallel Walls. Macromolecules, 2006, 39, 2247-2253.	4.8	25
266	Synthesis of a novel photopolymerized nanocomposite hydrogel for treatment of acute mechanical damage to cartilage. Acta Biomaterialia, 2011, 7, 3094-3100.	8.3	25
267	A multifunctional 2D black phosphorene-based platform for improved photovoltaics. Chemical Society Reviews, 2021, 50, 13346-13371.	38.1	25
268	Hydrothermal synthesis of hollow SnO2 spheres with excellent electrochemical performance for anodes in lithium ion batteries. Materials Research Bulletin, 2017, 96, 443-448.	5.2	24
269	A facile solvothermal polymerization approach to thermoplastic polymer-based nanocomposites as alternative anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 23019-23027.	10.3	24
270	Tailoring Charge Separation at Meticulously Engineered Conjugated Polymer/Perovskite Quantum Dot Interface for Photocatalyzing Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2022, 144, 12901-12914.	13.7	24

#	Article	IF	CITATIONS
271	Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO ₂ composed of well-defined multilayer nanoflakes by Ti anodization. Nanotechnology, 2011, 22, 305607.	2.6	23
272	Unconventional seed-mediated growth of ultrathin Au nanowires in aqueous solution. Chemical Science, 2015, 6, 6349-6354.	7.4	23
273	Revealing Electricalâ€Polingâ€Induced Polarization Potential in Hybrid Perovskite Photodetectors. Advanced Materials, 2020, 32, e2005481.	21.0	23
274	A control approach to high-speed probe-based nanofabrication. Nanotechnology, 2009, 20, 175301.	2.6	22
275	Bleifreie Halogenidâ€Perowskitâ€Nanokristalle: Kristallstrukturen, Synthese, StabilitÃæn und optische Eigenschaften. Angewandte Chemie, 2020, 132, 1042-1059.	2.0	22
276	Self-Assembly of Bolaamphiphiles into 2D Nanosheets <i>via</i> Synergistic and Meticulous Tailoring of Multiple Noncovalent Interactions. ACS Nano, 2021, 15, 3152-3160.	14.6	22
277	Robust Molecular Dipoleâ€Enabled Defect Passivation and Control of Energyâ€Level Alignment for Highâ€Efficiency Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 17805-17811.	2.0	22
278	Tailoring electrocatalytic activity of in situ crafted perovskite oxide nanocrystals via size and dopant control. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
279	Molecules squeezed and stroked. Nature, 2003, 425, 467-468.	27.8	21
280	Self-assembly of an ultra-high-molecular-weight comb block copolymer at the air–water interface. Soft Matter, 2009, 5, 4698.	2.7	21
281	Guided Organization of <i>λ</i> â€ÐNA into Microring Arrays from Liquid Capillary Bridges. Small, 2011, 7, 1641-1646.	10.0	21
282	Largeâ€Scale Robust Quantum Dot Microdisk Lasers with Controlled High Quality Cavity Modes. Advanced Optical Materials, 2017, 5, 1700011.	7.3	21
283	Hierarchical Self-Assembly of Conjugated Block Copolymers and Semiconducting Nanorods into One-Dimensional Nanocomposites. Macromolecules, 2018, 51, 8833-8843.	4.8	21
284	Conjugated cyclized-polyacrylonitrile encapsulated carbon nanotubes as core–sheath heterostructured anodes with favorable lithium storage. Journal of Materials Chemistry A, 2021, 9, 6962-6970.	10.3	21
285	Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field. Physical Review E, 1998, 58, 5867-5872.	2.1	20
286	Streng zweiphasige weiche und harte Janus‣trukturen – Synthese, Eigenschaften und Anwendungen. Angewandte Chemie, 2014, 126, 5630-5644.	2.0	20
287	Heterostructured ferroelectric BaTiO ₃ @MOF-Fe/Co electrocatalysts for efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 5350-5360.	10.3	20
288	Conjugated Polymers Confined and Sheared:Â Photoluminescence and Absorption Dichroism in a Surface Forces Apparatus. Macromolecules, 2005, 38, 9275-9279.	4.8	19

#	Article	IF	CITATIONS
289	Controlled evaporative assembly of polymers from confined solutions. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2552-2557.	2.1	19
290	High-speed atomic force microscope imaging: Adaptive multiloop mode. Physical Review E, 2014, 90, 012405.	2.1	19
291	Enhancement of optical gain characteristics of quantum dot films by optimization of organic ligands. Journal of Materials Chemistry C, 2016, 4, 10069-10081.	5.5	19
292	Large-scale patterning by the roll-based evaporation-induced self-assembly. Journal of Materials Chemistry, 2012, 22, 22844.	6.7	18
293	An external template-free route to uniform semiconducting hollow mesospheres and their use in photocatalysis. Nanoscale, 2015, 7, 12990-12997.	5.6	18
294	An integrated experimental and theoretical study on the optical properties of uniform hairy noble metal nanoparticles. Nanoscale, 2018, 10, 22750-22757.	5.6	18
295	Transforming Polymorphs <i>via</i> Meniscus-Assisted Solution-Shearing Conjugated Polymers for Organic Field-Effect Transistors. ACS Nano, 2022, 16, 11194-11203.	14.6	18
296	Spinodal decomposition kinetics of a mixture of liquid crystals and polymers. Macromolecular Chemistry and Physics, 1999, 200, 943-948.	2.2	17
297	Domain and network aggregation of CdTe quantum rods within Langmuir–Blodgett monolayers. Nanotechnology, 2008, 19, 215606.	2.6	17
298	Rational design of hybrid dye-sensitized solar cells composed of double-layered photoanodes with enhanced power conversion efficiency. Journal of Materials Chemistry A, 2014, 2, 11035-11039.	10.3	17
299	Chemicalâ€Bondingâ€Directed Hierarchical Assembly of Nanoribbonâ€Shaped Nanocomposites of Gold Nanorods and Poly(3â€hexylthiophene). Angewandte Chemie, 2016, 128, 8828-8832.	2.0	17
300	A general and rapid approach to crystalline metal sulfide nanoparticle synthesis for photocatalytic H ₂ generation. Journal of Materials Chemistry A, 2017, 5, 21669-21673.	10.3	17
301	Kinetics of spinodal decomposition in mixtures of low molecular weight liquid crystals and flexible polymers. Macromolecular Theory and Simulations, 1997, 6, 1153-1168.	1.4	16
302	Multifunctional quantum dot materials for perovskite solar cells: Charge transport, efficiency and stability. Nano Today, 2021, 40, 101286.	11.9	16
303	Aspects of electrohydrodynamic instabilities at polymer interfaces. Fibers and Polymers, 2003, 4, 1-7.	2.1	15
304	Semiconducting organic–inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods. Nanoscale, 2016, 8, 8887-8898.	5.6	15
305	Synthesis of Amphiphilic and Double Hydrophilic Star-like Block Copolymers and the Dual pH-Responsiveness of Unimolecular Micelle. Macromolecules, 2020, 53, 8286-8295.	4.8	15
306	A simple route to fiber-shaped heterojunctioned nanocomposites for knittable high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 11589-11597.	10.3	15

#	Article	IF	CITATIONS
307	Tailoring interfacial carrier dynamics <i>via</i> rationally designed uniform CsPbBr _x I _{3â°x} quantum dots for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 26098-26108.	10.3	15
308	Recent progress and perspectives on single-atom catalysis. Journal of Materials Chemistry A, 2022, 10, 5670-5672.	10.3	15
309	Monolithic Perovskite Solar Capacitor Enabled by Double-Sided TiO ₂ Nanotube Arrays. ACS Energy Letters, 2022, 7, 1260-1265.	17.4	15
310	Reply to Comment on Reassessment of Solidification in Fluids Confined between Mica Sheets. Langmuir, 2006, 22, 2399-2401.	3.5	14
311	High-Resolution Quantum Dot Photopatterning via Interference Lithography Assisted Microstamping. Journal of Physical Chemistry C, 2017, 121, 13370-13380.	3.1	14
312	Lightâ€Driven Shapeâ€Memory Porous Films with Precisely Controlled Dimensions. Angewandte Chemie, 2018, 130, 2161-2165.	2.0	14
313	Von der Präsionssynthese von Blockcopolymeren zu Eigenschaften und Anwendungen von funktionellen Nanopartikeln. Angewandte Chemie, 2018, 130, 2066-2093.	2.0	14
314	Large‣cale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscusâ€Assisted Selfâ€Assembly. Angewandte Chemie - International Edition, 2021, 60, 11751-11757.	13.8	14
315	Tailoring oxygen evolution reaction activity of metal-oxide spinel nanoparticles <i>via</i> judiciously regulating surface-capping polymers. Journal of Materials Chemistry A, 2021, 9, 20375-20384.	10.3	14
316	A Nonconventional Approach to Patterned Nanoarrays of DNA Strands for Templateâ€Assisted Assembly of Polyfluorene Nanowires. Small, 2016, 12, 4254-4263.	10.0	13
317	High-efficiency photoelectrochemical hydrogen generation enabled by p-type semiconductor nanoparticle-decorated n-type nanotube arrays. RSC Advances, 2017, 7, 17551-17558.	3.6	13
318	Control of Whispering Gallery Modes and PT-Symmetry Breaking in Colloidal Quantum Dot Microdisk Lasers with Engineered Notches. Nano Letters, 2019, 19, 6049-6057.	9.1	13
319	<scp>Selfâ€</scp> assembly of block copolymers for biological applications. Polymer International, 2022, 71, 366-370.	3.1	13
320	Spatially Ordered Poly(3â€hexylthiophene) Fibril Nanostructures via Controlled Evaporative Selfâ€Assembly. Advanced Materials Technologies, 2019, 4, 1800554.	5.8	12
321	Simple route to ridge optical waveguide fabricated via controlled evaporative self-assembly. Journal of Materials Chemistry, 2011, 21, 5230.	6.7	11
322	Self-assembly of a conjugated triblock copolymer at the air–water interface. Soft Matter, 2013, 9, 8050.	2.7	11
323	Rich Variety of Three-Dimensional Nanostructures Enabled by Geometrically Constraining Star-like Block Copolymers. Langmuir, 2016, 32, 7908-7916.	3.5	11
324	A Clean and Simple Route to Soft, Biocompatible Nanocapsules via UV-Cross-Linkable Azido-Hyperbranched Polyglycerol. Macromolecules, 2017, 50, 4906-4912.	4.8	11

#	Article	IF	CITATIONS
325	Hierarchical bicomponent TiO2 hollow spheres as a new high-capacity anode material for lithium-ion batteries. Journal of Materials Science, 2018, 53, 8499-8509.	3.7	11
326	Transformation from Nanofibers to Nanoribbons in Poly(3â€hexylthiophene) Solution by Adding Alkylthiols. Macromolecular Rapid Communications, 2018, 39, e1800048.	3.9	11
327	A Facile and Highly Efficient Route to Amphiphilic Starâ€Like Rodâ€Coil Block Copolymer via a Combination of Atom Transfer Radical Polymerization with Thiol–Ene Click Chemistry. Macromolecular Rapid Communications, 2020, 41, e1900540.	3.9	11
328	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie - International Edition, 2021, 60, 9772-9788.	13.8	11
329	Ternary Biocidal-Photocatalytic-Upconverting Nanocomposites for Enhanced Antibacterial Activity. ACS Sustainable Chemistry and Engineering, 2022, 10, 4741-4749.	6.7	11
330	Continuous crafting of uniform colloidal nanocrystals using an inert-gas-driven microflow reactor. Nanoscale, 2015, 7, 9731-9737.	5.6	10
331	Decay-to-Recovery Behavior and on–off Recovery of Photoluminescence Intensity from Core/Shell Quantum Dots. ACS Photonics, 2017, 4, 1691-1704.	6.6	10
332	Artificial Photosynthesis: Taking a Big Leap for Powering the Earth by Harnessing Solar Energy. Particle and Particle Systems Characterization, 2018, 35, 1700451.	2.3	10
333	Dualâ€Protected Metal Halide Perovskite Nanosheets with an Enhanced Set of Stabilities. Angewandte Chemie, 2021, 133, 7335-7342.	2.0	10
334	A facile and low-cost route to high-aspect-ratio microstructures on silicon via a judicious combination of flow-enabled self-assembly and metal-assisted chemical etching. Journal of Materials Chemistry C, 2016, 4, 8953-8961.	5.5	9
335	Solution-Stable Colloidal Gold Nanoparticles via Surfactant-Free, Hyperbranched Polyglycerol- <i>b</i> -polystyrene Unimolecular Templates. Langmuir, 2016, 32, 7180-7188.	3.5	9
336	Rapid Route to Polar Solvent-Directed Growth of Perovskite Nanowires. ACS Applied Nano Materials, 2019, 2, 7910-7915.	5.0	9
337	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie, 2016, 128, 5155-5159.	2.0	8
338	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie, 2017, 129, 13126-13131.	2.0	8
339	Programmed Emission Transformations: Negativeâ€ŧoâ€Positive Patterning Using the Decayâ€ŧoâ€Recovery Behavior of Quantum Dots. Advanced Optical Materials, 2017, 5, 1600509.	7.3	8
340	Continuous production of ultrathin organic–inorganic Ruddlesden–Popper perovskite nanoplatelets <i>via</i> a flow reactor. Nanoscale, 2021, 13, 13108-13115.	5.6	8
341	Two-Dimensional Polymers: Synthesis and Applications. ACS Applied Materials & Interfaces, 2021, 13, 45130-45138.	8.0	8
342	Necklaceâ€Like Nanostructures: From Fabrication, Properties to Applications. Advanced Materials, 2022, 34, .	21.0	8

#	Article	IF	CITATIONS
343	Micro-patterns of reduced graphene oxide (RG-O) platelets crafted by a self-assembled template. Soft Matter, 2011, 7, 6811.	2.7	7
344	Dynamics of polystyrene-block-poly(methylmethacrylate) (PS-b-PMMA) diblock copolymers and PS/PMMA blends: A dielectric study. Journal of Non-Crystalline Solids, 2013, 359, 27-32.	3.1	7
345	A facile and environmentally friendly route to multiferroic nanorods and their size-dependent magnetic properties. Journal of Materials Chemistry C, 2015, 3, 3121-3127.	5.5	7
346	Resolving Optical and Catalytic Activities in Thermoresponsive Nanoparticles by Permanent Ligation with Temperature‣ensitive Polymers. Angewandte Chemie, 2019, 131, 12036-12043.	2.0	7
347	One-dimensional hairy CNT/polymer/Au nanocomposites via ligating with amphiphilic crosslinkable block copolymers. Giant, 2021, 5, 100048.	5.1	7
348	Ultrastable highly-emissive amphiphilic perovskite nanocrystal composites via the synergy of polymer-grafted silica nanoreactor and surface ligand engineering for white light-emitting diode. Nano Energy, 2022, 98, 107321.	16.0	7
349	Phase separation in mixtures of thermotropic liquid crystals and flexible polymers. Science in China Series B: Chemistry, 1997, 40, 128-136.	0.8	6
350	Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 33-44.	0.4	6
351	Hybrid Solar Cells: Crafting Semiconductor Organicâ^'Inorganic Nanocomposites via Placing Conjugated Polymers in Intimate Contact with Nanocrystals for Hybrid Solar Cells (Adv. Mater.) Tj ETQq1 1 0.784	43 ⊉4.o gBT	- /Overlock 1
352	Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films. Langmuir, 2017, 33, 14325-14331.	3.5	6
353	Needle‣eaf‣ike Cu ₂ Mo ₆ S ₈ Films for Highly Efficient Visible‣ight Photocatalysis. Particle and Particle Systems Characterization, 2018, 35, 1700302.	2.3	6
354	Enabling the Selective Detection of Endocrine-Disrupting Chemicals via Molecularly Surface-Imprinted "Coffee Rings― Biomacromolecules, 2021, 22, 1523-1531.	5.4	6
355	Polymer-Ligated Uniform Lead Chalcogenide Nanoparticles with Tunable Size and Robust Stability Enabled by Judiciously Designed Surface Chemistry. Chemistry of Materials, 2021, 33, 6701-6712.	6.7	6
356	Quantum Dot Sensitized Solar Cells. Journal of Nanoengineering and Nanomanufacturing, 2011, 1, 155-171.	0.3	6
357	Semiconducting Spaghetti-like Organic–Inorganic Nanojunctions via Sequential Self-Assembly of Conjugated Polymers and Quantum Dots. Chemistry of Materials, 2022, 34, 847-853.	6.7	6
358	Cover Picture: Lowâ€Cost Copper Zinc Tin Sulfide Counter Electrodes for Highâ€Efficiency Dyeâ€Sensitized Solar Cells (Angew. Chem. Int. Ed. 49/2011). Angewandte Chemie - International Edition, 2011, 50, 11541-11541.	13.8	5
359	Self-Assembly of Miktoarm Star-Like AB _{<i>n</i>} Block Copolymers: From Wet to Dry Brushes. Langmuir, 2015, 31, 2905-2913.	3.5	5
360	Themed issue on perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 8924-8925.	10.3	5

#	Article	IF	CITATIONS
361	Germaniumbasierte Nanomaterialien für wiederaufladbare Batterien. Angewandte Chemie, 2016, 128, 8028-8054.	2.0	5
362	Possible Charge-Transfer-Induced Conductivity Enhancement in TiO ₂ Microtubes Decorated with Perovskite CsPbBr ₃ Nanocrystals. Langmuir, 2020, 36, 5408-5416.	3.5	5
363	Rapid Meniscusâ€Assisted Solutionâ€Printing of Conjugated Block Copolymers for Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, .	14.9	5
364	Unfolding the cocrystallization–charge transport correlation in all-conjugated triblock copolymers via meticulous molecular engineering for organic field-effect transistors. Nano Energy, 2022, 100, 107489.	16.0	5
365	Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly. Angewandte Chemie, 2017, 129, 4625-4630.	2.0	4
366	Unravelling the Correlation between Charge Mobility and Cocrystallization in Rod–Rod Block Copolymers for Highâ€Performance Fieldâ€Effect Transistors. Angewandte Chemie, 2018, 130, 8780-8784.	2.0	4
367	Largeâ€6cale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscusâ€Assisted Selfâ€Assembly. Angewandte Chemie, 2021, 133, 11857-11863.	2.0	4
368	Star-like polymer click-functionalized with small capping molecules: an initial investigation into properties and improving solubility in liquid crystals. RSC Advances, 2014, 4, 50212-50219.	3.6	3
369	Nanostructures: Graphene-Enabled Superior and Tunable Photomechanical Actuation in Liquid Crystalline Elastomer Nanocomposites (Adv. Mater. 41/2015). Advanced Materials, 2015, 27, 6535-6535.	21.0	3
370	Innenrücktitelbild: Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells (Angew. Chem. 13/2016). Angewandte Chemie, 2016, 128, 4441-4441.	2.0	3
371	Comparison of Octahedral and Spherical Nanoparticles for Plasmonics. IEEE Photonics Journal, 2019, 11, 1-6.	2.0	3
372	Stable Infrared-Emitting Chemical Composition Gradient Quantum Dots for Down-Convertors and Photodetectors. ACS Applied Nano Materials, 2020, 3, 11335-11343.	5.0	3
373	Silicon Anodes: Recent Advances in Siliconâ€Based Electrodes: From Fundamental Research toward Practical Applications (Adv. Mater. 16/2021). Advanced Materials, 2021, 33, 2170124.	21.0	3
374	Plasmonic Photocatalysis: Plasmonâ€Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites (Adv. Sci. 6/2016). Advanced Science, 2016, 3, .	11.2	2
375	Titelbild: Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly (Angew. Chem. 16/2017). Angewandte Chemie, 2017, 129, 4429-4429.	2.0	2
376	Rücktitelbild: Polymerâ€Templated Formation of Polydopamineâ€Coated SnO ₂ Nanocrystals: Anodes for Cyclable Lithiumâ€ion Batteries (Angew. Chem. 7/2017). Angewandte Chemie, 2017, 129, 1958-1958.	2.0	2
377	Rücktitelbild: Achieving Efficient Incorporation of π-Electrons into Graphitic Carbon Nitride for Markedly Improved Hydrogen Generation (Angew. Chem. 7/2019). Angewandte Chemie, 2019, 131, 2178-2178.	2.0	2
378	Alkaliâ€Ion Batteries: SnO ₂ as Advanced Anode of Alkaliâ€Ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility (Adv. Energy Mater. 6/2020). Advanced Energy Materials, 2020, 10, 2070027.	19.5	2

#	Article	IF	CITATIONS
379	Spectral and directional properties of elliptical quantum-dot microlasers. Journal of Photonics for Energy, 2018, 8, 1.	1.3	2
380	Iterative Control Approach to High-Speed Force-Distance Curve Measurement Using AFM for Biological Applications. , 2007, , .		1
381	SELF-ASSEMBLY OF HIGHLY ORDERED STRUCTURES ENABLED BY CONTROLLED EVAPORATION OF CONFINED MICROFLUIDS. , 2012, , 295-349.		1
382	Solar Cells: Hierarchically Structured Nanotubes for Highly Efficient Dye-Sensitized Solar Cells (Adv.) Tj ETQq0 0 C) rgBT /Ov 21.0	erlock 10 Tf 5 1
383	Lithiumâ€lon Batteries: Graphene ontaining Nanomaterials for Lithiumâ€lon Batteries (Adv. Energy Mater.) Tj	ETQq1 1 (19.5).784314 rgB 1
384	Crafting Multidimensional Nanocomposites: Functional Materials for Application in Energy Conversion, Energy Storage, and Optoelectronics. ACS Symposium Series, 2016, , 53-76.	0.5	1
385	To Etch or not to Etch. , 2018, , .		1
386	Perovskite Solar Cells: Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for Highâ€Efficiency Perovskite Solar Cells (Adv. Mater. 28/2020). Advanced Materials, 2020, 32, 2070211.	21.0	1
387	Rapid Capillaryâ€Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angewandte Chemie, 2020, 132, 15052-15059.	2.0	1
388	Frontispiece: Unconventional Route to Oxygenâ€Vacancyâ€Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1
389	Nano-Holes in Silicon Wafers Using Laser-Induced Surface Plasmon Polaritons. Journal of Nanoscience and Nanotechnology, 2008, 8, 2163-2166.	0.9	1
390	Heteroatom-doped graphene-based electrocatalysts for ORR, OER, and HER. , 2022, , 145-168.		1
391	Effect of Crystallinity on the Friction Behavior of Ultra-high-molecular-weight-polyethylene. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	0
392	Inside Front Cover: Directed Selfâ€Assembly of Gradient Concentric Carbon Nanotube Rings (Adv. Funct.) Tj ETQ	q0 ₁ 9.9 rgB	BT /Overlock 1
393	Inside Cover: Robust Self-Assembly of Highly Ordered Complex Structures by Controlled Evaporation of Confined Microfluids (Angew. Chem. Int. Ed. 3/2009). Angewandte Chemie - International Edition, 2009, 48, 414-414.	13.8	0
394	Self-assembly: Hierarchically Ordered Structures Enabled by Controlled Evaporative Self-Assembly (Small 20/2010). Small, 2010, 6, n/a-n/a.	10.0	0
395	Organic-Inorganic Nanocomposites: Organicâ^'Inorganic Nanocomposites by Placing Conjugated Polymers in Intimate Contact with Quantum Rods (Adv. Mater. 25/2011). Advanced Materials, 2011, 23, 2843-2843.	21.0	0
396	Innentitelbild: Semiconductor Anisotropic Nanocomposites Obtained by Directly Coupling Conjugated Polymers with Quantum Rods (Angew. Chem. 17/2011). Angewandte Chemie, 2011, 123, 3902-3902.	2.0	0

#	Article	IF	CITATIONS
397	Inside Cover: Semiconductor Anisotropic Nanocomposites Obtained by Directly Coupling Conjugated Polymers with Quantum Rods (Angew. Chem. Int. Ed. 17/2011). Angewandte Chemie - International Edition, 2011, 50, 3818-3818.	13.8	0
398	Heterojunctions: One-Dimensional Densely Aligned Perovskite-Decorated Semiconductor Heterojunctions with Enhanced Photocatalytic Activity (Small 12/2015). Small, 2015, 11, 1435-1435.	10.0	0
399	Nanowires: A Nonconventional Approach to Patterned Nanoarrays of DNA Strands for Templateâ€Assisted Assembly of Polyfluorene Nanowires (Small 31/2016). Small, 2016, 12, 4160-4160.	10.0	0
400	Rücktitelbild: Chemical-Bonding-Directed Hierarchical Assembly of Nanoribbon-Shaped Nanocomposites of Gold Nanorods and Poly(3-hexylthiophene) (Angew. Chem. 30/2016). Angewandte Chemie, 2016, 128, 8912-8912.	2.0	0
401	Innenrücktitelbild: Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption (Angew. Chem.) Tj ETQo	വ ച ര.784	l3 0 4 rgBT ∣C
402	Synthesis and Characterizations of Plasmonic Nanoparticles: Large Plain Au and Au/TiO <inf>2</inf> Core-Shell Nanoparticles. , 2018, , .		0
403	Titelbild: Robust SnO2â^'x Nanoparticle-Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodium-Ion Batteries (Angew. Chem. 29/2018). Angewandte Chemie, 2018, 130, 8919-8919.	2.0	0
404	Frontispiz: Unconventional Route to Oxygenâ€Vacancyâ€Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. Angewandte Chemie, 2020, 132, .	2.0	0
405	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie, 2021, 133, 9856-9872.	2.0	0
406	Electrocatalysis: Simultaneously Crafting Singleâ€Atomic Fe Sites and Graphitic Layerâ€Wrapped Fe ₃ C Nanoparticles Encapsulated within Mesoporous Carbon Tubes for Oxygen Reduction (Adv. Funct. Mater. 10/2021). Advanced Functional Materials, 2021, 31, 2170064.	14.9	0
407	Synthesis and Characterization of Semiconducting Conjugated Polymer-Nanowire Nanocomposites. Science of Advanced Materials, 2013, 5, 727-732.	0.7	0
408	Unraveling the Electronic Heterogeneity and Inhomogeneity in Individual Perovskite CsPbBr ₃ Nanowires. ACS Applied Energy Materials, 2022, 5, 4431-4438.	5.1	0
409	Template-Assisted Colloidal Synthesis of Plasmonic Nanocrystals. , 2022, , 235-304.		0
410	Rapid Meniscusâ€Assisted Solutionâ€Printing of Conjugated Block Copolymers for Fieldâ€Effect Transistors (Adv. Funct. Mater. 14/2022). Advanced Functional Materials, 2022, 32, .	14.9	0