
W Wei-Lynn Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8691364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of cIAP1 in Endothelial Cells Limits Metastatic Extravasation through Tumor-Derived Lymphotoxin Alpha. Cancers, 2021, 13, 599.	3.7	3
2	BRD9 is a druggable component of interferonâ€stimulated gene expression and antiviral activity. EMBO Reports, 2021, 22, e52823.	4.5	11
3	SMAC mimetics promote NIK-dependent inhibition of CD4 ⁺ T _H 17 cell differentiation. Science Signaling, 2019, 12, .	3.6	14
4	TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP. Cell Death and Disease, 2019, 10, 700.	6.3	25
5	Caspase-8 modulates physiological and pathological angiogenesis during retina development. Journal of Clinical Investigation, 2019, 129, 5092-5107.	8.2	16
6	Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss. International Journal of Molecular Sciences, 2018, 19, 684.	4.1	6
7	Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes. Cell Death and Disease, 2018, 9, 529.	6.3	26
8	Combination of IAP antagonist and IFNÎ ³ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death and Differentiation, 2017, 24, 481-491.	11.2	43
9	RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function. Cell Death and Disease, 2017, 8, e2588-e2588.	6.3	63
10	Regulating the balance between necroptosis, apoptosis and inflammation by inhibitors of apoptosis proteins. Immunology and Cell Biology, 2017, 95, 160-165.	2.3	53
11	Necroptosis Execution Is Mediated by Plasma Membrane Nanopores Independent of Calcium. Cell Reports, 2017, 19, 175-187.	6.4	101
12	Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death and Disease, 2016, 7, e2422-e2422.	6.3	69
13	NET formation can occur independently of RIPK3 and MLKL signaling. European Journal of Immunology, 2016, 46, 178-184.	2.9	106
14	TNF induced inhibition of Cirbp expression depends on RelB NF- κ B signalling pathway. Biochemistry and Biophysics Reports, 2016, 5, 22-26.	1.3	5
15	Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Cancer Cell, 2016, 29, 145-158.	16.8	93
16	Response to Heard etÂal. EMBO Journal, 2015, 34, 2396-2397.	7.8	5
17	RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nature Communications, 2015, 6, 6282.	12.8	514
18	Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival. Cell, 2015, 162, 1365-1378.	28.9	121

W WEI-LYNN WONG

#	Article	IF	CITATIONS
19	Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia, 2015, 58, 140-148.	6.3	32
20	TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. ELife, 2015, 4, .	6.0	75
21	TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. ELife, 2014, 3, .	6.0	232
22	cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood, 2014, 123, 2562-2572.	1.4	145
23	IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO Journal, 2012, 31, 1679-1691.	7.8	180
24	The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity. Molecular Cell, 2012, 46, 746-758.	9.7	336
25	Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity, 2012, 36, 215-227.	14.3	430
26	Linear ubiquitination prevents inflammation and regulates immune signalling. Nature, 2011, 471, 591-596.	27.8	805
27	In TNF-stimulated Cells, RIPK1 Promotes Cell Survival by Stabilizing TRAF2 and cIAP1, which Limits Induction of Non-canonical NF-κB and Activation of Caspase-8. Journal of Biological Chemistry, 2011, 286, 13282-13291.	3.4	81
28	Characterization of the apoptotic response of human leukemia cells to organosulfur compounds. BMC Cancer, 2010, 10, 351.	2.6	9
29	RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death and Differentiation, 2010, 17, 482-487.	11.2	162
30	TAK1 Is Required for Survival of Mouse Fibroblasts Treated with TRAIL, and Does So by NF-κB Dependent Induction of cFLIPL. PLoS ONE, 2010, 5, e8620.	2.5	19
31	Tumor Necrosis Factor (TNF) Signaling, but Not TWEAK (TNF-like Weak Inducer of Apoptosis)-triggered cIAP1 (Cellular Inhibitor of Apoptosis Protein 1) Degradation, Requires cIAP1 RING Dimerization and E2 Binding. Journal of Biological Chemistry, 2010, 285, 17525-17536.	3.4	37
32	TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis. Journal of Biological Chemistry, 2009, 284, 35906-35915.	3.4	202
33	Another Facet of Ubiquitylation: Death. Journal of Molecular Cell Biology, 2009, 1, 80-81.	3.3	3
34	CARP2 deficiency does not alter induction of NF-κB by TNFα. Current Biology, 2009, 19, R15-R17.	3.9	12
35	Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. Journal of Cell Biology, 2009, 187, 1037-1054.	5.2	223
36	Bclâ€⊋ family proteins: The sentinels of the mitochondrial apoptosis pathway. IUBMB Life, 2008, 60, 390-397.	3.4	157

W WEI-LYNN WONG

#	Article	IF	CITATIONS
37	TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. Journal of Cell Biology, 2008, 182, 171-184.	5.2	226
38	TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. Journal of Experimental Medicine, 2008, 205, i18-i18.	8.5	0
39	Determinants of sensitivity to lovastatin-induced apoptosis in multiple myeloma. Molecular Cancer Therapeutics, 2007, 6, 1886-1897.	4.1	65
40	IAP Antagonists Target cIAP1 to Induce TNFα-Dependent Apoptosis. Cell, 2007, 131, 682-693.	28.9	993
41	Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene, 2006, 25, 6781-6799.	5.9	272
42	Novel Disulfides with Antitumour Efficacy and Specificity. Australian Journal of Chemistry, 2005, 58, 128.	0.9	10
43	Blocking the Raf/MEK/ERK Pathway Sensitizes Acute Myelogenous Leukemia Cells to Lovastatin-Induced Apoptosis. Cancer Research, 2004, 64, 6461-6468.	0.9	202
44	Analysis of Myc Bound Loci Identified by CpG Island Arrays Shows that Max Is Essential for Myc-Dependent Repression. Current Biology, 2003, 13, 882-886.	3.9	165
45	HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia, 2002, 16, 508-519.	7.2	507
46	Prognostic variables in newly diagnosed children and adolescents with acute myeloid leukemia: Children's Cancer Group Study 213. Leukemia, 2002, 16, 601-607.	7.2	46
47	Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia, 2001, 15, 1398-1407	7.2	182