Kazuhiro R Nitta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8689498/publications.pdf

Version: 2024-02-01

22 papers

3,932 citations

567281 15 h-index 713466 21 g-index

23 all docs 23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

7420 citing authors

#	Article	IF	Citations
1	DNA-Binding Specificities of Human Transcription Factors. Cell, 2013, 152, 327-339.	28.9	1,085
2	Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science, 2017, 356, .	12.6	912
3	DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature, 2015, 527, 384-388.	27.8	462
4	Conservation of transcription factor binding specificities across 600 million years of bilateria evolution. ELife, $2015,4,.$	6.0	316
5	DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature, 2016, 534, S15-S16.	27.8	280
6	The interaction landscape between transcription factors and the nucleosome. Nature, 2018, 562, 76-81.	27.8	259
7	Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, 2017, 544, 245-249.	27.8	180
8	Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Research, 2020, 30, 1060-1072.	5 . 5	109
9	ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research, 2018, 46, D718-D725.	14.5	90
10	XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Developmental Biology, 2004, 275, 258-267.	2.0	48
11	Expression of Sox1 during Xenopus early embryogenesis. Biochemical and Biophysical Research Communications, 2006, 351, 287-293.	2.1	37
12	Fatal Perinatal Mitochondrial Cardiac Failure Caused by Recurrent De Novo Duplications in the ATAD3 Locus. Med, 2021, 2, 49-73.e10.	4.4	33
13	ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Research, 2020, 48, D668-D675.	14.5	30
14	<scp>H</scp> em <scp>R</scp> is an <scp>O</scp> mp <scp>R</scp> / <scp>P</scp> ho <scp>B</scp> â€like response regulator from <scp><i>L</i></scp>	2.5	23
15	A homozygous variant in <scp><i>NDUFA8</i></scp> is associated with developmental delay, microcephaly, and epilepsy due to mitochondrial complex I deficiency. Clinical Genetics, 2020, 98, 155-165.	2.0	18
16	High-Throughput Protein Production Combined with High-Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities. Methods in Molecular Biology, 2019, 2025, 487-517.	0.9	15
17	Long-term prognosis and genetic background of cardiomyopathy in 223 pediatric mitochondrial disease patients. International Journal of Cardiology, 2021, 341, 48-55.	1.7	14
18	Neonatal-onset mitochondrial disease: clinical features, molecular diagnosis and prognosis. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 329-334.	2.8	9

#	Article	IF	CITATION
19	Genome sequencing and RNAâ€seq analyses of mitochondrial complex I deficiency revealed <i>Alu</i> insertionâ€mediated deletion in <i>NDUFV2</i> . Human Mutation, 2021, 42, 1422-1428.	2.5	4
20	Diverse Mechanisms of Resistance to Decitabine and Venetoclax Therapy in Newly Diagnosed and Relapsed/Refractory AML Inferred By Transcriptome Analysis. Blood, 2021, 138, 2244-2244.	1.4	2
21	Development of Leigh syndrome with a high probability of cardiac manifestations in infantile-onset patients with m.14453GÂ>ÂA. Mitochondrion, 2022, 63, 1-8.	3.4	2
22	Clinical heterogeneity in patients with m.4412G > A MT-TM mutation and different heteroplasmy levels. Mitochondrion, 2021, 59, 214-215.	3.4	0