Yinon Rudich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688504/publications.pdf

Version: 2024-02-01

262 papers

24,676 citations

76 h-index 9861 141 g-index

343 all docs

343 docs citations

times ranked

343

16766 citing authors

#	Article	IF	CITATIONS
1	The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 2009, 9, 5155-5236.	4.9	3,486
2	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.	4.9	908
3	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	4.1	714
4	Desert dust suppressing precipitation: A possible desertification feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5975-5980.	7.1	665
5	Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics, 2006, 6, 729-753.	4.9	657
6	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	4.9	641
7	The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11207-11212.	7.1	568
8	Aging of Organic Aerosol: Bridging the Gap Between Laboratory and Field Studies. Annual Review of Physical Chemistry, 2007, 58, 321-352.	10.8	492
9	Aerosol invigoration and restructuring of Atlantic convective clouds. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	444
10	An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmospheric Chemistry and Physics, 2010, 10, 10561-10605.	4.9	352
11	SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nature Microbiology, 2021, 6, 1188-1198.	13.3	314
12	Optical Properties of Secondary Organic Aerosols and Their Changes by Chemical Processes. Chemical Reviews, 2015, 115, 4400-4439.	47.7	311
13	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	4.9	307
14	Laboratory Perspectives on the Chemical Transformations of Organic Matter in Atmospheric Particles. Chemical Reviews, 2003, 103, 5097-5124.	47.7	297
15	On the twilight zone between clouds and aerosols. Geophysical Research Letters, 2007, 34, .	4.0	287
16	The BodÃ@lÃ@ depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters, 2006, 1, 014005.	5.2	278
17	Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmospheric Chemistry and Physics, 2006, 6, 375-402.	4.9	265
18	Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 1: General equations, parameters, and terminology. Atmospheric Chemistry and Physics, 2007, 7, 5989-6023.	4.9	262

#	Article	IF	Citations
19	The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS). Faraday Discussions, 2008, 137, 279-295.	3.2	255
20	Reactive Uptake of Ozone by Aerosol-Associated Unsaturated Fatty Acids:  Kinetics, Mechanism, and Products. Journal of Physical Chemistry A, 2002, 106, 6469-6476.	2.5	215
21	Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environmental Science & Event. Environmental Event	10.0	215
22	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio. Aerosol Science and Technology, 2004, 38, 1206-1222.	3.1	212
23	Validation of urban NO ₂ concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities. Atmospheric Chemistry and Physics, 2009, 9, 3867-3879.	4.9	205
24	Cloud Condensation Nuclei properties of model and atmospheric HULIS. Atmospheric Chemistry and Physics, 2006, 6, 2465-2482.	4.9	202
25	Direct observation of completely processed calcium carbonate dust particles. Faraday Discussions, 2005, 130, 453.	3.2	198
26	Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics, 2005, 5, 781-797.	4.9	196
27	Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy. Atmospheric Chemistry and Physics, 2007, 7, 1523-1536.	4.9	180
28	Chemical and mineralogical analysis of individual mineral dust particles. Journal of Geophysical Research, 2001, 106, 18029-18036.	3.3	165
29	Measuring atmospheric composition change. Atmospheric Environment, 2009, 43, 5351-5414.	4.1	160
30	Adsorption of organic compounds pertinent to urban environments onto mineral dust particles. Journal of Geophysical Research, 2004, 109, .	3.3	159
31	Products and Mechanisms of Ozone Reactions with Oleic Acid for Aerosol Particles Having Coreâ Shell Morphologies. Journal of Physical Chemistry A, 2004, 108, 6686-6695.	2.5	156
32	Effects of reversible adsorption and Langmuirâ€"Hinshelwood surface reactions on gas uptake by atmospheric particles. Physical Chemistry Chemical Physics, 2003, 5, 351-356.	2.8	153
33	The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles. Atmospheric Chemistry and Physics, 2006, 6, 5213-5224.	4.9	147
34	Photochemical production of aerosols from real plant emissions. Atmospheric Chemistry and Physics, 2009, 9, 4387-4406.	4.9	133
35	Airborne microplastic particles detected in the remote marine atmosphere. Communications Earth & Environment, 2020, 1 , .	6.8	131
36	Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Reviews of Geophysics, 2022, 60, .	23.0	131

3

#	Article	IF	Citations
37	Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season. Journal of Geophysical Research, 2007, 112 , .	3.3	128
38	Trans Boundary Transport of Pollutants by Atmospheric Mineral Dust. Environmental Science & Emp; Technology, 2006, 40, 2996-3005.	10.0	124
39	Transport of North African dust from the BodÃ $@$ lÃ $@$ depression to the Amazon Basin: a case study. Atmospheric Chemistry and Physics, 2010, 10, 7533-7544.	4.9	124
40	Variation in global chemical composition of PM _{2.5} : emerging results from SPARTAN. Atmospheric Chemistry and Physics, 2016, 16, 9629-9653.	4.9	123
41	New Analytical Method for the Determination of Levoglucosan, Polyhydroxy Compounds, and 2-Methylerythritol and Its Application to Smoke and Rainwater Samples. Environmental Science & Technology, 2005, 39, 2744-2752.	10.0	122
42	Chemical, physical, and optical evolution of biomass burning aerosols: a case study. Atmospheric Chemistry and Physics, 2011, 11, 1491-1503.	4.9	122
43	Reactive uptake of ozone by proxies for organic aerosols: Surface versus bulk processes. Journal of Geophysical Research, 2000, 105, 14667-14676.	3.3	119
44	Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin. Atmospheric Chemistry and Physics, 2005, 5, 3111-3126.	4.9	118
45	Reactive uptake of NO3on pure water and ionic solutions. Journal of Geophysical Research, 1996, 101, 21023-21031.	3.3	116
46	Effect of intrinsic organic carbon on the optical properties of fresh diesel soot. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6699-6704.	7.1	116
47	Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmospheric Environment, 2014, 84, 113-121.	4.1	114
48	Relationships between carbonyl sulfide (COS) and CO ₂ during leaf gas exchange. New Phytologist, 2010, 186, 869-878.	7.3	110
49	Decoupling Physical from Biological Processes to Assess the Impact of Viruses on a Mesoscale Algal Bloom. Current Biology, 2014, 24, 2041-2046.	3.9	110
50	Product studies of the OH- and ozone-initiated oxidation of some monoterpenes. Journal of Geophysical Research, 2000, 105, 11561-11572.	3.3	107
51	Analysis of Semivolatile Organic Compounds in Atmospheric Aerosols by Direct Sample Introduction Thermal Desorption GC/MS. Environmental Science & Technology, 2001, 35, 2326-2333.	10.0	107
52	Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2011, 11, 829-839.	4.9	107
53	Density changes of aerosol particles as a result of chemical reaction. Atmospheric Chemistry and Physics, 2005, 5, 275-291.	4.9	106
54	Broadband measurements of aerosol extinction in the ultraviolet spectral region. Atmospheric Measurement Techniques, 2013, 6, 861-877.	3.1	105

#	Article	IF	Citations
55	Treating clouds with a grain of salt. Geophysical Research Letters, 2002, 29, 17-1-17-4.	4.0	104
56	Hygroscopic growth of atmospheric and model humic-like substances. Journal of Geophysical Research, 2007, 112 , .	3.3	104
57	Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?. Atmospheric Chemistry and Physics, 2015, 15, 13599-13613.	4.9	103
58	Detection and quantification of levoglucosan in atmospheric aerosols: a review. Analytical and Bioanalytical Chemistry, 2006, 385, 26-33.	3.7	101
59	Single Exposure to near Roadway Particulate Matter Leads to Confined Inflammatory and Defense Responses: Possible Role of Metals. Environmental Science & Environmental Science & 2015, 49, 8777-8785.	10.0	101
60	Origin-Dependent Variations in the Atmospheric Microbiome Community in Eastern Mediterranean Dust Storms. Environmental Science & Environmental Scienc	10.0	101
61	Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia. Physical Chemistry Chemical Physics, 2014, 16, 10629-10642.	2.8	98
62	Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks. Atmospheric Chemistry and Physics, 2013, 13, 8755-8770.	4.9	96
63	Broadband optical properties of biomassâ€burning aerosol and identification of brown carbon chromophores. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5441-5456.	3.3	96
64	Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO ₃ Radical Reactions. Environmental Science & Environmental	10.0	96
65	The NH4+-NO3â^-Clâ^-SO42â^-H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids?. Journal of Geophysical Research, 2005, 110, .	3.3	94
66	Examining feedbacks of aerosols to urban climate with a model that treats $3\hat{a}\in D$ clouds with aerosol inclusions. Journal of Geophysical Research, 2007, 112, .	3.3	93
67	Alternative pathway for atmospheric particles growth. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6840-6844.	7.1	91
68	Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties. Atmospheric Chemistry and Physics, 2012, 12, 5511-5521.	4.9	91
69	Reactions of O(3P) with Alkyl Iodides:Â Rate Coefficients and Reaction Products. The Journal of Physical Chemistry, 1996, 100, 14005-14015.	2.9	90
70	Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean. Environmental Science & Environmental Scienc	10.0	90
71	Effects on IL- 1^2 signaling activation induced by water and organic extracts of fine particulate matter (PM2.5) inÂvitro. Environmental Pollution, 2018, 237, 592-600.	7.5	90
72	The role of BrNO3in marine tropospheric chemistry: A model study. Geophysical Research Letters, 1999, 26, 2857-2860.	4.0	88

#	Article	IF	CITATIONS
73	Oxidation of atmospheric reduced sulphur compounds: perspective from laboratory studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 171-182.	4.0	86
74	Complex Refractive Indices of Aerosols Retrieved by Continuous Wave-Cavity Ring Down Aerosol Spectrometer. Analytical Chemistry, 2009, 81, 1762-1769.	6.5	86
75	The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols. Atmospheric Chemistry and Physics, 2011, 11, 9697-9707.	4.9	84
76	Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences, 2012, 9, 5111-5123.	3.3	84
77	Wetting of Hydrophobic Organic Surfaces and Its Implications to Organic Aerosols in the Atmosphere. Journal of Physical Chemistry A, 2000, 104, 5238-5245.	2.5	83
78	Exposure of Lung Epithelial Cells to Photochemically Aged Secondary Organic Aerosol Shows Increased Toxic Effects. Environmental Science and Technology Letters, 2018, 5, 424-430.	8.7	83
79	The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements. Atmospheric Measurement Techniques, 2018, 11, 6231-6257.	3.1	82
80	Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging. Atmospheric Chemistry and Physics, 2019, 19, 139-163.	4.9	81
81	Uptake of Cl and Br by organic surfaces-A perspective on organic aerosols processing by tropospheric oxidants. Geophysical Research Letters, 2001, 28, 4083-4086.	4.0	80
82	Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Scientific Reports, 2016, 6, 35038.	3.3	80
83	Ion Motion Synchronization in an Ion-Trap Resonator. Physical Review Letters, 2001, 87, 055001.	7.8	79
84	Infection of phytoplankton by aerosolized marine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6643-6647.	7.1	79
85	Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmospheric Environment, 2007, 41, 1107-1118.	4.1	78
86	Low Cytotoxicity of Inorganic Nanotubes and Fullerene-Like Nanostructures in Human Bronchial Epithelial Cells: Relation to Inflammatory Gene Induction and Antioxidant Response. Environmental Science & Environmental Science	10.0	78
87	Particulate Matter Toxicity Is Nrf2 and Mitochondria Dependent: The Roles of Metals and Polycyclic Aromatic Hydrocarbons. Chemical Research in Toxicology, 2020, 33, 1110-1120.	3.3	78
88	Kinetics of Hydroxyl Radical Reactions with Isotopically Labeled Hydrogen. The Journal of Physical Chemistry, 1996, 100, 3037-3043.	2.9	76
89	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Emp; Technology, 2017, 51, 2519-2528.	10.0	75
90	SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmospheric Measurement Techniques, 2015, 8, 505-521.	3.1	71

#	Article	IF	Citations
91	Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials. Environmental Science & Emp; Technology, 2019, 53, 12054-12061.	10.0	71
92	Crystallization of atmospheric sulfate-nitrate-ammonium particles. Geophysical Research Letters, 2003, 30, .	4.0	69
93	Global Sources of Fine Particulate Matter: Interpretation of PM _{2.5} Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model. Environmental Science & Emp; Technology, 2018, 52, 11670-11681.	10.0	68
94	Reaction of Methylbutenol with the OH Radical: Mechanism and Atmospheric Implications. The Journal of Physical Chemistry, 1995, 99, 12188-12194.	2.9	67
95	Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20414-20419.	7.1	67
96	Contrasting Behavior of Antifreeze Proteins: Ice Growth Inhibitors and Ice Nucleation Promoters. Journal of Physical Chemistry Letters, 2019, 10, 966-972.	4.6	67
97	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio. Aerosol Science and Technology, 2004, 38, 1206-1222.	3.1	67
98	Reactive uptake of ozone by proxies for organic aerosols: Surface-bound and gas-phase products. Journal of Geophysical Research, 2001, 106, 3045-3056.	3.3	66
99	Reactive uptake of NO3by liquid and frozen organics. Journal of Geophysical Research, 2002, 107, AAC 6-1.	3.3	66
100	Suppression of new particle formation from monoterpene oxidation by NO _x . Atmospheric Chemistry and Physics, 2014, 14, 2789-2804.	4.9	63
101	Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry. Atmospheric Chemistry and Physics, 2008, 8, 1823-1833.	4.9	62
102	Interaction of internally mixed aerosols with light. Physical Chemistry Chemical Physics, 2010, 12, 21-31.	2.8	62
103	Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect. Heliyon, 2015, 1, e00036.	3.2	62
104	Environmental conditions regulate the impact of plants on cloud formation. Nature Communications, 2017, 8, 14067.	12.8	62
105	Nrf2 protects against diverse PM2.5 components-induced mitochondrial oxidative damage in lung cells. Science of the Total Environment, 2019, 669, 303-313.	8.0	62
106	Rate Coefficients for Reactions of NO3with a Few Olefins and Oxygenated Olefins. The Journal of Physical Chemistry, 1996, 100, 5374-5381.	2.9	61
107	The reactions of O(1D) with CH4and C3H8monomers and clusters. Journal of Chemical Physics, 1993, 99, 4500-4508.	3.0	60
108	CCN Activity and Hygroscopic Growth of Organic Aerosols Following Reactive Uptake of Ammonia. Environmental Science & Environm	10.0	60

#	Article	IF	Citations
109	Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 5793-5806.	4.9	60
110	Air quality and climate change: Designing new win-win policies for Europe. Environmental Science and Policy, 2016, 65, 48-57.	4.9	60
111	Chemical Composition and Molecular-Specific Optical Properties of Atmospheric Brown Carbon Associated with Biomass Burning. Environmental Science & Environmental Science & 2021, 55, 2511-2521.	10.0	58
112	High resolution mass spectrometry using a linear electrostatic ion beam trap. International Journal of Mass Spectrometry, 2003, 229, 55-60.	1.5	57
113	Radiative signature of absorbing aerosol over the eastern Mediterranean basin. Atmospheric Chemistry and Physics, 2014, 14, 7213-7231.	4.9	57
114	Size-Resolved Identification, Characterization, and Quantification of Primary Biological Organic Aerosol at a European Rural Site. Environmental Science & Environmental Science & 2016, 50, 3425-3434.	10.0	57
115	Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. Environmental Pollution, 2016, 210, 227-237.	7.5	57
116	The Welzmann Supercooled Droplets Observation on aÂMicroarray (WISDOM) and application for ambient dust. Atmospheric Measurement Techniques, 2018, 11, 233-248.	3.1	57
117	The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions. Atmospheric Chemistry and Physics, 2010, 10, 7253-7265.	4.9	55
118	Changes in the optical properties of benzo[a]pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3. Physical Chemistry Chemical Physics, 2011, 13, 6484.	2.8	55
119	Role of Interfacial Water in the Heterogeneous Uptake of Glyoxal by Mixed Glycine and Ammonium Sulfate Aerosols. Journal of Physical Chemistry A, 2012, 116, 5948-5957.	2.5	55
120	Connecting the Oxidative Potential of Secondary Organic Aerosols with Reactive Oxygen Species in Exposed Lung Cells. Environmental Science & Exposed Lung Cells.	10.0	55
121	ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment. Environmental Research, 2016, 146, 252-262.	7.5	54
122	Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: a case study using elemental, ionic and organic tracers. Atmospheric Environment, 2004, 38, 1593-1604.	4.1	53
123	Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis. Atmospheric Chemistry and Physics, 2012, 12, 2681-2690.	4.9	52
124	Henry's Law Constants of Some \hat{l}^2 -, \hat{l}^3 -, and \hat{l}^4 -Hydroxy Alkyl Nitrates of Atmospheric Interest. Environmental Science & Environmenta	10.0	51
125	Crystals Formed at 293 K by Aqueous Sulfateâ^'Nitrateâ^'Ammoniumâ^'Proton Aerosol Particles. Journal of Physical Chemistry A, 2004, 108, 9375-9383.	2.5	51
126	Surfactant properties of atmospheric and model humicâ€ike substances (HULIS). Geophysical Research Letters, 2007, 34, .	4.0	51

#	Article	IF	Citations
127	Uptake of NO3 on KI solutions: rate coefficient for the NO3 + lâ° reaction and gas-phase diffusion coefficients for NO3. Chemical Physics Letters, 1996, 261, 467-473.	2.6	50
128	Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: Outdoor exposure study supported by laboratory experiments. Science of the Total Environment, 2016, 541, 365-371.	8.0	50
129	Negative Mass Instability for Interacting Particles in a 1D Box: Theory and Application. Physical Review Letters, 2002, 89, 283204.	7.8	49
130	Hydrophobic Organic Components of Ambient Fine Particulate Matter (PM _{2.5}) Associated with Inflammatory Cellular Response. Environmental Science & Environmental Sci	10.0	48
131	A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water. Atmospheric Chemistry and Physics, 2019, 19, 4823-4849.	4.9	48
132	Retrieval of Aerosol Complex Refractive Index by Combining Cavity Ring Down Aerosol Spectrometer Measurements with Full Size Distribution Information. Aerosol Science and Technology, 2007, 41, 1011-1017.	3.1	47
133	The possible association between exposure to air pollution and the risk for congenital malformations. Environmental Research, 2014, 135, 173-180.	7.5	47
134	Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver. Science of the Total Environment, 2018, 626, 147-155.	8.0	46
135	The Atmospheric Fate of C3â^'C6Hydroxyalkyl Nitrates. Journal of Physical Chemistry A, 2003, 107, 7809-7817.	2.5	44
136	Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde. Atmospheric Measurement Techniques, 2016, 9, 41-52.	3.1	44
137	Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). Environmental Health Perspectives, 2022, 130, 27003.	6.0	44
138	Influence of the Kuwait oil fires plume (1991) on the microphysical development of clouds. Journal of Geophysical Research, 2003, 108, .	3.3	43
139	Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA). Atmospheric Chemistry and Physics, 2016, 16, 1105-1121.	4.9	43
140	Characterization of Light-Absorbing Oligomers from Reactions of Phenolic Compounds and Fe(III). ACS Earth and Space Chemistry, 2017, 1, 637-646.	2.7	43
141	Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: Empirical and calculation methods. Biomaterials, 2006, 27, 651-659.	11.4	42
142	Role of Chemistry in Earth's Climate. Chemical Reviews, 2015, 115, 3679-3681.	47.7	41
143	Evolution of the Complex Refractive Index of Secondary Organic Aerosols during Atmospheric Aging. Environmental Science & Technology, 2018, 52, 3456-3465.	10.0	40
144	Mechanisms of lung toxicity induced by biomass burning aerosols. Particle and Fibre Toxicology, 2020, 17, 4.	6.2	39

#	Article	IF	Citations
145	An Approach for Faster Retrieval of Aerosols' Complex Refractive Index Using Cavity Ring-Down Spectroscopy. Aerosol Science and Technology, 2012, 46, 1140-1150.	3.1	37
146	Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols. Atmospheric Measurement Techniques, 2017, 10, 1203-1213.	3.1	37
147	Marine aerosol as a possible source for endotoxins in coastal areas. Science of the Total Environment, 2014, 499, 311-318.	8.0	36
148	Optical Properties of Secondary Organic Aerosol Produced by Nitrate Radical Oxidation of Biogenic Volatile Organic Compounds. Environmental Science & Environmental Science & 2021, 55, 2878-2889.	10.0	35
149	Multiphase chemistry of NO3in the remote troposphere. Journal of Geophysical Research, 1998, 103, 16133-16143.	3.3	34
150	Water adsorption by hydrophobic organic surfaces: Experimental evidence and implications to the atmospheric properties of organic aerosols. Journal of Geophysical Research, 1999, 104, 16053-16059.	3.3	34
151	Fourier Transform Time-of-Flight Mass Spectrometry in an Electrostatic Ion Beam Trap. Analytical Chemistry, 2000, 72, 4041-4046.	6.5	34
152	Atmospheric HULIS enhance pollutant degradation by promoting the dark Fenton reaction. Geophysical Research Letters, 2008, 35, .	4.0	34
153	A new approach for retrieving the UV–vis optical properties of ambient aerosols. Atmospheric Measurement Techniques, 2016, 9, 3477-3490.	3.1	33
154	Modification of Sex Expression in Muskmelon by Treatment with the Growth Retardant B-995. Physiologia Plantarum, 1967, 20, 1052-1058.	5.2	32
155	New Directions: Fundamentals of atmospheric chemistry: Keeping a three-legged stool balanced. Atmospheric Environment, 2014, 84, 390-391.	4.1	32
156	Sizeâ€dependent hygroscopicity parameter (<i>i²(i)) and chemical composition of secondary organic cloud condensation nuclei. Geophysical Research Letters, 2015, 42, 10,920.</i>	4.0	31
157	Stochastic nucleation processes and substrate abundance explain time-dependent freezing in supercooled droplets. Npj Climate and Atmospheric Science, 2020, 3, 2.	6.8	30
158	Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles?. Atmospheric Chemistry and Physics, 2022, 22, 1793-1809.	4.9	30
159	Co-variability of smoke and fire in the Amazon basin. Atmospheric Environment, 2015, 109, 97-104.	4.1	29
160	Size-dependent ice nucleation by airborne particles during dust events in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2019, 19, 11143-11158.	4.9	29
161	Effective broadband refractive index retrieval by a white light optical particle counter. Physical Chemistry Chemical Physics, 2009, 11, 7943.	2.8	28
162	Physical Chemistry of Climate Metrics. Chemical Reviews, 2015, 115, 3682-3703.	47.7	28

#	Article	IF	Citations
163	Laboratory Insights into the Diel Cycle of Optical and Chemical Transformations of Biomass Burning Brown Carbon Aerosols. Environmental Science & Envi	10.0	28
164	Coal fly ash: linking immersion freezing behavior and physicochemical particle properties. Atmospheric Chemistry and Physics, 2018, 18, 13903-13923.	4.9	27
165	Secondary Organic Aerosol Formation From Isoprene Epoxides in the Pearl River Delta, South China: IEPOX―and HMMLâ€Derived Tracers. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6999-7012.	3.3	27
166	Estimation of transboundary transport of pollution aerosols by remote sensing in the eastern Mediterranean. Journal of Geophysical Research, 2008, 113, .	3.3	26
167	How Different Calculations of the Refractive Index Affect Estimates of the Radiative Forcing Efficiency of Ammonium Sulfate Aerosols. Journals of the Atmospheric Sciences, 2011, 68, 1845-1852.	1.7	26
168	Control of Rhizoctonia solani fruit rot of tomatoes by Trichoderma harzianum Rifai. Crop Protection, 1985, 4, 359-364.	2.1	25
169	The reaction of O(3P) with cyclohexane clusters. Journal of Chemical Physics, 1993, 98, 2936-2940.	3.0	25
170	Measurement of octanol–air partition coefficients using solid-phase microextraction (SPME)—application to hydroxy alkyl nitrates. Atmospheric Environment, 2001, 35, 5843-5854.	4.1	25
171	Changes in atmospheric <scp><scp>CO₂</scp></scp> influence the allergenicity of <i><scp>A</scp>spergillus fumigatus</i> . Global Change Biology, 2013, 19, 2381-2388.	9.5	24
172	On-chip analysis of atmospheric ice-nucleating particles in continuous flow. Lab on A Chip, 2020, 20, 2889-2910.	6.0	24
173	Thermochemical, Cloud Condensation Nucleation Ability, and Optical Properties of Alkyl Aminium Sulfate Aerosols. Journal of Physical Chemistry C, 2013, 117, 22412-22421.	3.1	23
174	Links between airborne microbiome, meteorology, and chemical composition in northwestern Turkey. Science of the Total Environment, 2020, 725, 138227.	8.0	23
175	Energy distribution in HCl(v=1) following the vibrational predissociation of C2H2–HCl complex. Journal of Chemical Physics, 1992, 96, 8616-8617.	3.0	22
176	TiO ₂ nanoparticles induce insulin resistance in liver-derived cells both directly and via macrophage activation. Nanotoxicology, 2012, 6, 804-812.	3.0	22
177	Molecular Analysis of Secondary Brown Carbon Produced from the Photooxidation of Naphthalene. Environmental Science & Environm	10.0	22
178	Uptake of NO3on Water Solutions:Â Rate Coefficients for Reactions of NO3with Cloud Water Constituents. Journal of Physical Chemistry A, 1997, 101, 2316-2322.	2.5	21
179	Spatially Shaped Laser Pulses for the Simultaneous Detection of Polycyclic Aromatic Hydrocarbons as well as Positive and Negative Inorganic Ions in Single Particle Mass Spectrometry. Analytical Chemistry, 2019, 91, 10282-10288.	6.5	21
180	Mitochondriaâ€mediated oxidative stress induced by desert dust in rat alveolar macrophages. GeoHealth, 2017, 1, 4-16.	4.0	20

#	Article	IF	Citations
181	Comprehensive detection of nitrated aromatic compounds in fine particulate matter using gas chromatography and tandem mass spectrometry coupled with an electron capture negative ionization source. Journal of Hazardous Materials, 2021, 407, 124794.	12.4	20
182	Optical Properties of Secondary Organic Aerosol Produced by Photooxidation of Naphthalene under NOx Condition. Environmental Science & Environmental S	10.0	20
183	Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns. Environmental Pollution, 2018, 239, 532-543.	7. 5	19
184	Role of aerosol size and composition in nucleation scavenging within clouds in a shallow cold front. Journal of Geophysical Research, 2003, 108, .	3.3	18
185	Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols. Environmental Science & Emp; Technology, 2016, 50, 2292-2300.	10.0	18
186	Exposure to naphthalene and \hat{l}^2 -pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. Environment International, 2022, 166, 107366.	10.0	18
187	Fluxes of Fine Particles Over a Semi-Arid Pine Forest: Possible Effects of a Complex Terrain. Aerosol Science and Technology, 2013, 47, 906-915.	3.1	17
188	Effect of sea breeze circulation on aerosol mixing state and radiative properties in a desert setting. Atmospheric Chemistry and Physics, 2017, 17, 11331-11353.	4.9	17
189	Isomeric Identification of Particle-Phase Organic Nitrates through Gas Chromatography and Time-of-Flight Mass Spectrometry Coupled with an Electron Capture Negative Ionization Source. Environmental Science & Technology, 2020, 54, 707-713.	10.0	17
190	Large global variations in measured airborne metal concentrations driven by anthropogenic sources. Scientific Reports, 2020, 10, 21817.	3.3	17
191	Toxicity of Water- and Organic-Soluble Wood Tar Fractions from Biomass Burning in Lung Epithelial Cells. Chemical Research in Toxicology, 2021, 34, 1588-1603.	3.3	17
192	Reactant rotational energy effect on energy distribution in products. The role of the electronic angular momentum. Chemical Physics Letters, 1993, 215, 674-680.	2.6	16
193	A comparative study of a liquid and a solid matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and collision cross section measurements. , 2000, 14, 515-519.		16
194	Enrichment of surfaceâ€active compounds in coalescing cloud drops. Geophysical Research Letters, 2008, 35, .	4.0	16
195	Optical extinction of highly porous aerosol following atmospheric freeze drying. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6768-6787.	3.3	16
196	Volatility of Atmospherically Relevant Alkylaminium Carboxylate Salts. Journal of Physical Chemistry A, 2015, 119, 4336-4346.	2.5	16
197	Role of Criegee Intermediates in Secondary Sulfate Aerosol Formation in Nocturnal Power Plant Plumes in the Southeast US. ACS Earth and Space Chemistry, 2019, 3, 748-759.	2.7	16
198	Effect of a single solvent atom on bimolecular reactions: Collisions of O(3P) with hydrocarbon–argon clusters. Journal of Chemical Physics, 1993, 98, 2941-2946.	3.0	15

#	Article	IF	Citations
199	The Reactions of O(¹ D) with Propane and Water Monomers and Clusters. Israel Journal of Chemistry, 1994, 34, 59-66.	2.3	15
200	Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmospheric Chemistry and Physics, 2018, 18, 7379-7391.	4.9	14
201	Infection Dynamics of a Bloom-Forming Alga and Its Virus Determine Airborne Coccolith Emission from Seawater. IScience, 2018, 6, 327-335.	4.1	14
202	Decoupling atmospheric and oceanic factors affecting aerosol loading over a cluster of mesoscale North Atlantic eddies. Geophysical Research Letters, 2014, 41, 4075-4081.	4.0	13
203	The Role of Secondary Ice Processes in Midlatitude Continental Clouds. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,762.	3.3	13
204	Ice Nucleation Properties of Ice-binding Proteins from Snow Fleas. Biomolecules, 2019, 9, 532.	4.0	13
205	Humidity driven nanoscale chemical separation in complex organic matter. Environmental Chemistry, 2011, 8, 450.	1.5	13
206	Scattering and absorption cross sections of atmospheric gases in the ultraviolet–visible wavelength range (307–725 nm). Atmospheric Chemistry and Physics, 2021, 21, 14927-14940.	4.9	13
207	pH modifies the oxidative potential and peroxide content of biomass burning HULIS under dark aging. Science of the Total Environment, 2022, 834, 155365.	8.0	13
208	Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans. Communications Earth & Environment, 2022, 3, .	6.8	13
209	Effects of Row Width and Seedling Spacing on Yield and its Components in Grain Sorghum Grown under Dryland Conditions 1. Agronomy Journal, 1966, 58, 602-604.	1.8	12
210	Photofunctional Self-Assembled Nanostructures Formed by Perylene Diimideâ^'Gold Nanoparticle Hybridsâ€. Journal of Physical Chemistry B, 2010, 114, 14389-14396.	2.6	12
211	Size-resolved atmospheric ice-nucleating particles during East Asian dust events. Atmospheric Chemistry and Physics, 2021, 21, 3491-3506.	4.9	12
212	High Pressure Inside Nanometer-Sized Particles Influences the Rate and Products of Chemical Reactions. Environmental Science &	10.0	12
213	Size-Resolved Community Structure of Bacteria and Fungi Transported by Dust in the Middle East. Frontiers in Microbiology, 2021, 12, 744117.	3.5	12
214	Secondary organic aerosols produced from photochemical oxidation of secondarily evaporated biomass burning organic gases: Chemical composition, toxicity, optical properties, and climate effect. Environment International, 2021, 157, 106801.	10.0	11
215	Structure and Protein-Protein Interactions of Ice Nucleation Proteins Drive Their Activity. Frontiers in Microbiology, 0, 13, .	3.5	11
216	Aerosol Inorganic Composition at a Tropical Site: Discrepancies Between Filter-Based Sampling and a Semi-Continuous Method. Aerosol Science and Technology, 2008, 42, 255-269.	3.1	10

#	Article	IF	Citations
217	Direct Kinetics Study of the Reaction of Peroxyacetyl Radical with NO between 218 and 370 K. Journal of Physical Chemistry A, 1999, 103, 6766-6771.	2.5	9
218	Multiphase Decomposition of Novel Oxygenated Organics in Aqueous and Organic Media. Environmental Science & Environmental Scie	10.0	9
219	Hydration-Influenced Sorption of Organic Compounds by Model and Atmospheric Humic-Like Substances (HULIS). Environmental Science & Eamp; Technology, 2009, 43, 1811-1817.	10.0	9
220	The Potential Role of Criegee Intermediates in Nighttime Atmospheric Chemistry. A Modeling Study. ACS Earth and Space Chemistry, 2017, 1, 288-298.	2.7	9
221	Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid. Atmospheric Environment, 2018, 173, 306-315.	4.1	9
222	Tara Pacific Expedition's Atmospheric Measurements of Marine Aerosols across the Atlantic and Pacific Oceans: Overview and Preliminary Results. Bulletin of the American Meteorological Society, 2020, 101, E536-E554.	3.3	9
223	Early detection of smoldering in silos: Organic material emissions as precursors. Fire Safety Journal, 2020, 114, 103009.	3.1	9
224	Organic Iodine Compounds in Fine Particulate Matter from a Continental Urban Region: Insights into Secondary Formation in the Atmosphere. Environmental Science & Environmental Science & 2021, 55, 1508-1514.	10.0	9
225	Gelatin Stabilizes Nebulized Proteins in Pulmonary Drug Delivery against COVID-19. ACS Biomaterials Science and Engineering, 2022, 8, 2553-2563.	5.2	9
226	Rotational relaxation in a free expansion of HCl. Journal of Chemical Physics, 1992, 96, 4423-4428.	3.0	8
227	Simultaneous retrieval of the complex refractive indices of the core and shell of coated aerosol particles from extinction measurements using simulated annealing. Applied Optics, 2011, 50, 4393.	2.1	8
228	Spatial boundaries of Aerosol Robotic Network observations over the Mediterranean basin. Geophysical Research Letters, 2016, 43, 2259-2266.	4.0	8
229	A Closer Look at the Role of the Cyprus Low on Dust Events in the Negev Desert. Atmosphere, 2020, 11, 1020.	2.3	8
230	Correcting micro-aethalometer absorption measurements for brown carbon aerosol. Science of the Total Environment, 2021, 777, 146143.	8.0	7
231	Sensitive Detection and Identification of DNA and RNA Using a Patterned Capillary Tube. Analytical Chemistry, 2011, 83, 9418-9423.	6.5	6
232	The Response of Airborne Mycobiome to Dust Storms in the Eastern Mediterranean. Journal of Fungi (Basel, Switzerland), 2021, 7, 802.	3.5	6
233	Nocturnal Atmospheric Oxidative Processes in the Indoâ€Gangetic Plain and Their Variation During the COVIDâ€19 Lockdowns. Geophysical Research Letters, 2022, 49, .	4.0	6
234	Rate Coefficients for the Reactions of Cl Atoms with a Series of C3â^'C6 Hydroxyalkyl Nitrates at 296 $\hat{A}\pm2$ K. Journal of Physical Chemistry A, 2002, 106, 5902-5907.	2.5	5

#	Article	IF	Citations
235	Diel cycle of sea spray aerosol concentration. Nature Communications, 2021, 12, 5476.	12.8	5
236	The reaction of O(3P) with cyclohexane clusters - hint for the mechanism in the liquid phase. Journal of the American Chemical Society, 1991, 113, 7077-7078.	13.7	4
237	Mass and Collision Cross-Section Determination Using a Low-Vacuum Mass Spectrometer. Analytical Chemistry, 1999, 71, 648-651.	6.5	4
238	Close Examination of the Principle of Global Per-Capita Allocation of the Earth's Ability to Absorb Greenhouse Gas. Theoretical Inquiries in Law, 2013, 14, .	0.3	4
239	On the Complementarity and Informative Value of Different Electron Ionization Mass Spectrometric Techniques for the Chemical Analysis of Secondary Organic Aerosols. ACS Earth and Space Chemistry, 2022, 6, 1358-1374.	2.7	4
240	Accurate observation of black and brown carbon in atmospheric fine particles via a versatile aerosol concentration enrichment system (VACES). Science of the Total Environment, 2022, 837, 155817.	8.0	4
241	Evolution of light absorption properties during photochemical aging of straw open burning aerosols. Science of the Total Environment, 2022, 838, 156431.	8.0	4
242	Urban PM source apportionment mapping using microscopic chemical imaging. Science of the Total Environment, 2014, 488-489, 456-460.	8.0	3
243	The Toxic Effect of Water-Soluble Particulate Pollutants from Biomass Burning on Alveolar Lung Cells. Atmosphere, 2021, 12, 1023.	2.3	3
244	Cytotoxicity and chemical composition of women's personal PM _{2.5} exposures from rural China. Environmental Science Atmospheres, 2021, 1, 359-371.	2.4	2
245	A retrospective cross-sectional study of traffic-related air pollution and asthma prevalence among young adults in Israel. , 2015, , .		2
246	The air we breathe: Past, present, and future: general discussion. Faraday Discussions, 2017, 200, 501-527.	3.2	1
247	Above us only sky. Communications Earth & Environment, 2021, 2, .	6.8	1
248	SOME EFFECTS OF MINERAL DUST PARTICLES ON CLOUD MICROPHYSICS: NUMERICAL INVESTIGATION OF A DUST STORM SITUATION. Journal of Aerosol Science, 2001, 32, 929-930.	3.8	1
249	Chemical composition and morphological analysis of atmospheric particles from an intensive bonfire burning festival. Environmental Science Atmospheres, 2022, 2, 616-633.	2.4	1
250	Reactions of oxygen atoms with hydrocarbon clustersâ€"the solvent effect. AIP Conference Proceedings, 1994, , .	0.4	0
251	<title>Reaction of oxygen atoms with hydrocarbon monomers and clusters: the power of state-selectivity $<$ /title>. , 1994, , .		0
252	Two-laser differential absorption for wide molecular bands. , 1996, , .		0

YINON RUDICH

#	Article	IF	CITATIONS
253	Laboratory Perspectives on the Chemical Transformations of Organic Matter in Atmospheric Particles. ChemInform, 2004, 35, no.	0.0	0
254	Tribute to A. R. Ravishankara. Journal of Physical Chemistry A, 2012, 116, 5733-5734.	2.5	0
255	Introduction of Ron Naaman. Journal of Physical Chemistry C, 2013, 117, 22171-22171.	3.1	0
256	Editorial: Review Articles for <i>Journal of Geophysical Research – Atmospheres</i> are Welcome. Journal of Geophysical Research D: Atmospheres, 2013, 118, vi.	3.3	0
257	Air-sampled Filter Analysis for Endotoxins and DNA Content. Journal of Visualized Experiments, 2016, , .	0.3	0
258	Atmospheric chemistry processes: general discussion. Faraday Discussions, 2017, 200, 353-378.	3.2	0
259	New tools for atmospheric chemistry: general discussion. Faraday Discussions, 2017, 200, 663-691.	3.2	0
260	LABORATORY STUDIES ON THE REACTIVITY OF TROPOSPHERIC OXIDANTS WITH PROXIES FOR ORGANIC AEROSOLS. Journal of Aerosol Science, 2001, 32, 647-648.	3.8	0
261	Infection Dynamics of a Bloom-Forming Alga and Its Virus Determine Airborne Coccolith Emission from Seawater. SSRN Electronic Journal, 0, , .	0.4	0
262	Marine Aerosols: Measurements by the Tara Pacific Expedition. Bulletin of the American Meteorological Society, 2020, 101, 499-504.	3.3	0