Yi-Sheng Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Applied Catalysis B: Environmental, 2016, 191, 8-17.	20.2	260
2	Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO ₂ Hydrogenation Producing Value-Added Aromatics. ACS Catalysis, 2019, 9, 895-901.	11.2	236
3	Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide. Applied Catalysis B: Environmental, 2019, 244, 427-437.	20.2	168
4	Ultrathin Visibleâ€Lightâ€Driven Mo Incorporating In ₂ O ₃ –ZnIn ₂ Se ₄ Zâ€Scheme Nanosheet Photocatalysts. Advanced Materials, 2019, 31, e1807226.	21.0	165
5	Confinement Effect of Carbon Nanotubes: Copper Nanoparticles Filled Carbon Nanotubes for Hydrogenation of Methyl Acetate. ACS Catalysis, 2012, 2, 1958-1966.	11.2	138
6	An Introduction of CO ₂ Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis. Accounts of Chemical Research, 2013, 46, 1838-1847.	15.6	137
7	Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst. Applied Catalysis B: Environmental, 2020, 264, 118522.	20.2	136
8	Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane. Applied Catalysis B: Environmental, 2015, 176-177, 542-552.	20.2	119
9	Direct Synthesis of Ethanol from Dimethyl Ether and Syngas over Combined Hâ€Mordenite and Cu/ZnO Catalysts. ChemSusChem, 2010, 3, 1192-1199.	6.8	118
10	A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization. Catalysis Science and Technology, 2015, 5, 4081-4090.	4.1	104
11	Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry, 2011, 20, 435-440.	1.8	103
12	Hydrogenation of CO ₂ into aromatics over a ZnCrO _x –zeolite composite catalyst. Chemical Communications, 2019, 55, 973-976.	4.1	102
13	A highly dispersed nickel supported catalyst for dry reforming of methane. Catalysis Communications, 2012, 20, 6-11.	3.3	97
14	Synthesis of isoalkanes over a core (Fe–Zn–Zr)–shell (zeolite) catalyst by CO ₂ hydrogenation. Chemical Communications, 2016, 52, 7352-7355.	4.1	95
15	Pt Nanocatalysts Supported on Reduced Graphene Oxide for Selective Conversion of Cellulose or Cellobiose to Sorbitol. ChemSusChem, 2014, 7, 1398-1406.	6.8	89
16	Facilely Synthesized H-Mordenite Nanosheet Assembly for Carbonylation of Dimethyl Ether. ACS Applied Materials & Interfaces, 2015, 7, 8398-8403.	8.0	86
17	A Comparative Study on the Thermodynamics of Dimethyl Ether Synthesis from CO Hydrogenation and CO2 Hydrogenation. Industrial & Engineering Chemistry Research, 2006, 45, 1152-1159.	3.7	85
18	Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins. Applied Catalysis A: General, 2007, 329, 99-105.	4.3	78

#	Article	IF	CITATIONS
19	Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO 2 matrix. Fuel, 2015, 147, 243-252.	6.4	78
20	Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase. Catalysis Today, 2005, 104, 25-29.	4.4	75
21	Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods. Fuel, 2014, 132, 211-218.	6.4	69
22	lso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts. Applied Catalysis A: General, 2015, 505, 141-149.	4.3	69
23	A double-shell capsule catalyst with core–shell-like structure for one-step exactly controlled synthesis of dimethyl ether from CO2 containing syngas. Catalysis Today, 2011, 171, 229-235.	4.4	65
24	Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis. Fuel Processing Technology, 2009, 90, 446-451.	7.2	60
25	Effects of Fe dopants and residual carbonates on the catalytic activities of the perovskite-type La0.7Sr0.3Co1â^'Fe O3 NO storage catalyst. Applied Catalysis B: Environmental, 2014, 146, 24-34.	20.2	60
26	Mesoporous ZnZSM-5 zeolites synthesized by one-step desilication and reassembly: a durable catalyst for methanol aromatization. RSC Advances, 2016, 6, 23428-23437.	3.6	60
27	Effects of Y2O3-modification to Ni/γ-Al2O3 catalysts on autothermal reforming of methane with CO2 to syngas. International Journal of Hydrogen Energy, 2013, 38, 1892-1900.	7.1	56
28	Structure-activity correlations of LiNO 3 /Mg 4 AlO 5.5 catalysts for glycerol carbonate synthesis from glycerol and dimethyl carbonate. Journal of Industrial and Engineering Chemistry, 2015, 21, 394-399.	5.8	56
29	Effective Suppression of CO Selectivity for CO ₂ Hydrogenation to High-Quality Gasoline. ACS Catalysis, 2021, 11, 1528-1547.	11.2	54
30	MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethy ether to dimethoxymethane. Journal of Molecular Catalysis A, 2007, 263, 149-155.	4.8	52
31	Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis. Chemical Communications, 2012, 48, 1263-1265.	4.1	51
32	Methane decomposition and carbon deposition over Ni/ZrO2 catalysts: Comparison of amorphous, tetragonal, and monoclinic zirconia phase. International Journal of Hydrogen Energy, 2019, 44, 17887-17899.	7.1	51
33	Ternary copper–cobalt–cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation. Applied Catalysis A: General, 2016, 514, 14-23.	4.3	49
34	Synergetic catalysis of bimetallic copper–cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas. Catalysis Science and Technology, 2018, 8, 3936-3947.	4.1	49
35	Study on the deactivation phenomena of Cu-based catalyst for methanol synthesis in slurry phase. Fuel, 2008, 87, 430-434.	6.4	48
36	Synergistic Effect of a Boronâ€Doped Carbonâ€Nanotubeâ€Supported Cu Catalyst for Selective Hydrogenation of Dimethyl Oxalate to Ethanol. Chemistry - A European Journal, 2017, 23, 8252-8261.	3.3	47

#	Article	IF	CITATIONS
37	Characterization and catalytic application of MnCl2 modified HZSM-5 zeolites in synthesis of aromatics from syngas via dimethyl ether. Journal of Industrial and Engineering Chemistry, 2013, 19, 975-980.	5.8	46
38	Effect of Vaporâ€phaseâ€treatment to CuZnZr Catalyst on the Reaction Behaviors in CO ₂ Hydrogenation into Methanol. ChemCatChem, 2019, 11, 1448-1457.	3.7	46
39	BaFeO _{3â^'<i>x</i>} Perovskite: An Efficient NO _{<i>x</i>} Absorber with a High Sulfur Tolerance. Journal of Physical Chemistry C, 2010, 114, 11844-11852.	3.1	45
40	Isobutanol synthesis from syngas over K–Cu/ZrO 2 –La 2 O 3 (x) catalysts: Effect of La-loading. Journal of Molecular Catalysis A, 2015, 396, 254-260.	4.8	44
41	Dehydrogenation of propane over a hydrothermal-synthesized Ga ₂ O ₃ –Al ₂ O ₃ catalyst in the presence of carbon dioxide. Catalysis Science and Technology, 2016, 6, 5183-5195.	4.1	44
42	Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst. Journal of Catalysis, 2020, 389, 47-59.	6.2	44
43	Synthesis of isoalkanes over Fe–Zn–Zr/HY composite catalyst through carbon dioxide hydrogenation. Catalysis Communications, 2007, 8, 1711-1714.	3.3	43
44	Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas. Energy & Fuels, 2008, 22, 1463-1468.	5.1	43
45	Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation. Fuel, 2017, 195, 69-81.	6.4	43
46	Novel Ethanol Synthesis Method via C1 Chemicals without Any Agriculture Feedstocks. Industrial & Engineering Chemistry Research, 2010, 49, 5485-5488.	3.7	42
47	Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization. RSC Advances, 2015, 5, 92222-92233.	3.6	42
48	Rhenium oxide-modified H ₃ PW ₁₂ O ₄₀ /TiO ₂ catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether. Green Chemistry, 2014, 16, 4708-4715.	9.0	41
49	Direct synthesis of dimethyl ether from biomass-derived syngas over Cu–ZnO–Al2O3–ZrO2(x)/γ-Al2O3 bifunctional catalysts: Effect of Zr-loading. Fuel Processing Technology, 2014, 126, 88-94.	7.2	41
50	Construction of atomically dispersed Cu sites and S vacancies on CdS for enhanced photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 16339-16344.	10.3	41
51	Cation distribution in Zn–Cr spinel structure and its effects on synthesis of isobutanol from syngas: Structure–activity relationship. Journal of Molecular Catalysis A, 2015, 404-405, 139-147.	4.8	40
52	FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation. Applied Catalysis B: Environmental, 2022, 300, 120713.	20.2	40
53	The role of different state ZnO over non-stoichiometric Zn–Cr spinel catalysts for isobutanol synthesis from syngas. Applied Catalysis A: General, 2017, 536, 57-66.	4.3	38
54	The role of potassium promoter in isobutanol synthesis over Zn–Cr based catalysts. Catalysis Science and Technology, 2016, 6, 4105-4115.	4.1	37

#	Article	IF	CITATIONS
55	CO 2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction. Chinese Journal of Catalysis, 2017, 38, 717-725.	14.0	37
56	Studies on surface impregnation combustion method to prepare supported Co/SiO2 catalysts and its application for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2012, 435-436, 217-224.	4.3	36
57	NO adsorption behaviors of the MnO catalysts in lean-burn atmospheres. Journal of Hazardous Materials, 2013, 260, 543-551.	12.4	36
58	Probing the promotional roles of cerium in the structure and performance of Cu/SiO ₂ catalysts for ethanol production. Catalysis Science and Technology, 2018, 8, 6441-6451.	4.1	36
59	Visible light-driven methanol dehydrogenation and conversion into 1,1-dimethoxymethane over a non-noble metal photocatalyst under acidic conditions. Catalysis Science and Technology, 2018, 8, 3372-3378.	4.1	35
60	Probing Hydrophobization of a Cu/ZnO Catalyst for Suppression of Water–Gas Shift Reaction in Syngas Conversion. ACS Catalysis, 2021, 11, 4633-4643.	11.2	34
61	The synergistic effect between ZnO and ZnCr2O4 on the catalytic performance for isobutanol synthesis from syngas. Fuel, 2019, 253, 1570-1577.	6.4	33
62	Binary ZnO/Zn–Cr nanospinel catalysts prepared by a hydrothermal method for isobutanol synthesis from syngas. Catalysis Science and Technology, 2018, 8, 2975-2986.	4.1	32
63	Syntheses of Isobutane and Branched Higher Hydrocarbons from Carbon Dioxide and Hydrogen over Composite Catalysts. Industrial & Engineering Chemistry Research, 1999, 38, 3225-3229.	3.7	31
64	Facile solid-state synthesis of Cu–Zn–O catalysts for novel ethanol synthesis from dimethyl ether (DME) and syngas (CO+H2). Fuel, 2013, 109, 54-60.	6.4	31
65	Hydrogen production by methane cracking over different coal chars. Fuel, 2011, 90, 3473-3479.	6.4	30
66	Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO ₂ to gasoline. Catalysis Science and Technology, 2019, 9, 5401-5412.	4.1	30
67	Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3–SnO2 catalyst under mild conditions. Green Chemistry, 2013, 15, 1501.	9.0	29
68	Influence of synthesis conditions on NO oxidation and NO storage performances of La0.7Sr0.3MnO3 perovskite-type catalyst in lean-burn atmospheres. Materials Chemistry and Physics, 2014, 143, 578-586.	4.0	29
69	Isobutanol synthesis from syngas on Zn-Cr based catalysts: New insights into the effect of morphology and facet of ZnO nanocrystal. Fuel, 2018, 217, 21-30.	6.4	29
70	Ethanol and Higher Alcohols Synthesis from Syngas over CuCoM (M=Fe, Cr, Ga and Al) Nanoplates Derived From Hydrotalcite‣ike Precursors. ChemCatChem, 2019, 11, 2695-2706.	3.7	29
71	Visible‣ight Direct Conversion of Ethanol to 1,1â€Diethoxyethane and Hydrogen over a Nonâ€Precious Metal Photocatalyst. Chemistry - A European Journal, 2019, 25, 189-194.	3.3	29
72	Tri-reforming of coal bed methane to syngas over the Ni-Mg-ZrO2 catalyst. Journal of Fuel Chemistry and Technology, 2012, 40, 831-837.	2.0	28

#	Article	IF	CITATIONS
73	Study on the influence of oxygen-containing groups on the performance of Ni/AC catalysts in methanol vapor-phase carbonylation. Chemical Engineering Journal, 2016, 293, 129-138.	12.7	28
74	Design of an Autoreduced Copper in Carbon Nanotube Catalyst to Realize the Precisely Selective Hydrogenation of Dimethyl Oxalate. ChemCatChem, 2017, 9, 1067-1075.	3.7	28
75	The real active sites over Zn–Cr catalysts for direct synthesis of isobutanol from syngas: structure-activity relationship. RSC Advances, 2015, 5, 89273-89281.	3.6	27
76	The mechanism of higher alcohol formation on ZrO2-based catalyst from syngas. Korean Journal of Chemical Engineering, 2015, 32, 406-412.	2.7	26
77	SO3H-modified petroleum coke derived porous carbon as an efficient solid acid catalyst for esterification of oleic acid. Journal of Porous Materials, 2016, 23, 263-271.	2.6	26
78	Synthesis of Polyoxymethylene Dimethyl Ethers from Dimethyl Ether Direct Oxidation over Carbonâ€Based Catalysts. ChemCatChem, 2018, 10, 273-279.	3.7	26
79	Highly-dispersed Ru nanoparticles sputtered on graphene for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 7320-7325.	7.1	26
80	Tuning interactions between zeolite and supported metal by physical-sputtering to achieve higher catalytic performances. Scientific Reports, 2013, 3, 2813.	3.3	25
81	Insight into the Nanoparticle Growth in Supported Ni Catalysts during the Early Stage of CO Hydrogenation Reaction: The Important Role of Adsorbed CO Molecules. ACS Catalysis, 2018, 8, 6367-6374.	11.2	25
82	Research on catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2 modified heteropolyacid catalysts. Catalysis Communications, 2008, 9, 1916-1919.	3.3	24
83	Increasing the shell thickness by controlling the core size of zeolite capsule catalyst: Application in iso-paraffin direct synthesis. Catalysis Communications, 2008, 9, 2520-2524.	3.3	24
84	Low-Temperature Oxidation of Dimethyl Ether to Polyoxymethylene Dimethyl Ethers over CNT-Supported Rhenium Catalyst. Catalysts, 2016, 6, 43.	3.5	24
85	Insight into the role of hydroxyl groups on the ZnCr catalyst for isobutanol synthesis from syngas. Applied Catalysis A: General, 2017, 547, 1-11.	4.3	23
86	Study on deactivation of hybrid catalyst for dimethyl ether synthesis in slurry reactor. Journal of Fuel Chemistry and Technology, 2008, 36, 171-175.	2.0	22
87	Characterization of an HZSM-5/MnAPO-11 composite and its catalytic properties in the synthesis of high-octane hydrocarbons from syngas. Fuel, 2010, 89, 3510-3516.	6.4	21
88	Constructing Film Photocatalyst with Abundant Interfaces between CdS and Ni ₃ S ₂ Nanosheets for Efficient Photocatalytic Hydrogen Production. Energy Technology, 2018, 6, 2132-2138.	3.8	21
89	A Solid‣tate Combustion Method towards Metallic Cu–ZnO Catalyst without Further Reduction and its Application to Lowâ€Temperature Methanol Synthesis. ChemCatChem, 2012, 4, 863-871.	3.7	20
90	Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Cu–ZnO/SiO2 catalyst for low-temperature methanol synthesis. Catalysis Today, 2012, 185, 54-60.	4.4	20

#	Article	IF	CITATIONS
91	Mesoporous SiO2-confined La0.7Sr0.3CoO3 perovskite nanoparticles: an efficient NOx adsorber for lean-burn exhausts. Catalysis Science and Technology, 2013, 3, 1493.	4.1	20
92	Promotional effects of Sm2O3 on Mn-H4SiW12O40/SiO2 catalyst for dimethyl ether direct-oxidation to dimethoxymethane. Journal of Industrial and Engineering Chemistry, 2014, 20, 1869-1874.	5.8	20
93	Effect of the dimensions of carbon nanotube channels on copper–cobalt–cerium catalysts for higher alcohols synthesis. Catalysis Communications, 2016, 75, 92-97.	3.3	20
94	Effects of silylation on Ga/HZSM-5 for improved propane dehydroaromatization. Fuel, 2021, 283, 118889.	6.4	20
95	Effects of the MoO ₃ structure of Mo–Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions. Green Chemistry, 2015, 17, 1057-1064.	9.0	19
96	Effects of tetrahedral molybdenum oxide species and MoO _x domains on the selective oxidation of dimethyl ether under mild conditions. Catalysis Science and Technology, 2016, 6, 2975-2983.	4.1	18
97	Effect of calcination atmospheres on the catalytic performance of nano-CeO2 in direct synthesis of DMC from methanol and CO2. Korean Journal of Chemical Engineering, 2017, 34, 29-36.	2.7	18
98	Promotion effect of La on oxygen vacancy formation over Zn-Cr based catalyst for isobutanol synthesis from syngas. Fuel, 2021, 288, 119633.	6.4	18
99	Deactivation and regeneration of an activated carbon-supported nickel catalyst for methanol carbonylation in the vapor phase. Catalysis Communications, 2008, 9, 2107-2111.	3.3	17
100	Synthesis of light olefins from syngas over Fe–Mn–V–K catalysts in the slurry phase. Journal of Industrial and Engineering Chemistry, 2013, 19, 961-965.	5.8	17
101	MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation. Journal of Fuel Chemistry and Technology, 2019, 47, 934-941.	2.0	17
102	How the reflux treatment stabilizes the metastable structure of ZrO2 and improves the performance of Ni/ZrO2 catalyst for dry reforming of methane?. Energy Conversion and Management, 2020, 216, 112950.	9.2	17
103	Effect of Hydroxyl Groups on CuCoMg Nanosheets for Ethanol and Higher Alcohol Synthesis from Syngas. Industrial & Engineering Chemistry Research, 2021, 60, 2388-2399.	3.7	17
104	Application of modified CNTs with Ti(SO ₄) ₂ in selective oxidation of dimethyl ether. Catalysis Science and Technology, 2016, 6, 7193-7202.	4.1	16
105	The Support Effects on the Direct Conversion of Syngas to Higher Alcohol Synthesis over Copper-Based Catalysts. Catalysts, 2019, 9, 199.	3.5	16
106	Effects of surface hydroxyl groups induced by the co-precipitation temperature on the catalytic performance of direct synthesis of isobutanol from syngas. Fuel, 2019, 237, 1021-1028.	6.4	16
107	Effects of reaction atmosphere on dimethyl ether conversion to propylene process over Ca/ZSM-5. Journal of Fuel Chemistry and Technology, 2011, 39, 42-46.	2.0	15
108	Insight into the branched alcohol formation mechanism on K–ZnCr catalysts from syngas. Catalysis Science and Technology, 2019, 9, 2592-2600.	4.1	15

#	Article	IF	CITATIONS
109	Effect of Particle Size on the Hybrid Catalyst Activity for Slurry Phase Dimethyl Ether Synthesis. Industrial & Engineering Chemistry Research, 2005, 44, 2011-2015.	3.7	14
110	Catalytic Oxidation of Dimethyl Ether to Dimethoxymethane over MnCl2-H4SiW12O40/SiO2 Catalyst. Chinese Journal of Catalysis, 2006, 27, 916-920.	14.0	14
111	Combined air partial oxidation and CO2 reforming of coal bed methane to synthesis gas over co-precipitated Ni–Mg–ZrO2 catalyst. International Journal of Hydrogen Energy, 2011, 36, 12259-12267.	7.1	14
112	Vanadium oxide modified H-beta zeolite for the synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation. Fuel, 2019, 238, 289-297.	6.4	14
113	Water-gas shift coupling with methanation over MOx modified nanorod-NiO/γ-Al2O3 catalysts. Journal of Industrial and Engineering Chemistry, 2011, 17, 723-726.	5.8	13
114	Effects of calcination temperature on structure-activity of K-ZrO2/Cu/Al2O3 catalysts for ethanol and isobutanol synthesis from CO hydrogenation. Fuel, 2018, 227, 199-207.	6.4	13
115	LDH-Derived (CuZn) <i>_x</i> Al <i>_y</i> Bifunctional Catalyst for Direct Synthesis of Dimethyl Ether from Syngas. Industrial & Engineering Chemistry Research, 2020, 59, 11087-11097.	3.7	13
116	Catalytic conversion of CO2 into high value-added hydrocarbons over tandem catalyst. Journal of Fuel Chemistry and Technology, 2022, 50, 538-563.	2.0	13
117	Direct oxidation of dimethyl ether to ethanol over WO3/HZSM-5 catalysts. Catalysis Communications, 2012, 26, 173-177.	3.3	12
118	Effects of MoO ₃ crystalline structure of MoO ₃ –SnO ₂ catalysts on selective oxidation of glycol dimethyl ether to 1,2-propandiol. Catalysis Science and Technology, 2016, 6, 1842-1849.	4.1	12
119	A Study on the Order of Calcination and Liquid Reduction over Cu-Based Catalyst for Synthesis of Methanol from CO2/H2. Catalysis Letters, 2017, 147, 1235-1242.	2.6	12
120	Catalytic Oxidation of Dimethyl Ether to Dimethoxymethane over Cs Modified H3PW12O40/SiO2 Catalysts. Journal of Natural Gas Chemistry, 2007, 16, 322-325.	1.8	11
121	Facile Preparation of Cuâ€Al Oxide Catalysts and Their Application in the Direct Synthesis of Ethanol from Syngas. ChemistrySelect, 2017, 2, 10365-10370.	1.5	11
122	Insights into the deactivation mechanism of Zn-Cr binary catalyst for isobutanol synthesis via syngas. Fuel Processing Technology, 2019, 193, 53-62.	7.2	11
123	Insight into the Correlation between Cu Species Evolution and Ethanol Selectivity in the Direct Ethanol Synthesis from CO Hydrogenation. ChemCatChem, 2019, 11, 1123-1130.	3.7	11
124	Controlling CO ₂ hydrogenation selectivity by Rh-based catalysts with different crystalline phases of TiO ₂ . Chemical Communications, 2022, 58, 4219-4222.	4.1	11
125	Selective oxidation conversion of methanol/dimethyl ether. Chemical Communications, 2022, 58, 4687-4699.	4.1	11
126	The effects of the Mo–Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature. Catalysis Science and Technology, 2016, 6, 6109-6117.	4.1	10

#	Article	IF	CITATIONS
127	Ti-SBA-15 supported Cu–MgO catalyst for synthesis of isobutyraldehyde from methanol and ethanol. RSC Advances, 2016, 6, 85940-85950.	3.6	10
128	Preparation and characterization of NiW supported on Al-modified MCM-48 catalyst and its high hydrodenitrogenation activity and stability. RSC Advances, 2016, 6, 61747-61757.	3.6	10
129	Influence of Zirconia Phase on the Performance of Ni/ZrO ₂ for Carbon Dioxide Reforming of Methane. ACS Symposium Series, 2015, , 135-153.	0.5	9
130	Isobutanol Synthesis from Syngas over Zn r Catalyst: Effect of Zn/Cr Element Ratio. Energy Technology, 2018, 6, 1805-1812.	3.8	9
131	Increased Dispersion of Nickel Particles Supported on Activated Carbon by Treating with Methyl Iodide. Catalysis Letters, 2018, 148, 3018-3023.	2.6	9
132	Effect of Potassium on the Regulation of C ₁ Intermediates in Isobutyl Alcohol Synthesis from Syngas over CuLaZrO ₂ Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 9343-9351.	3.7	9
133	Effects of calcination atmosphere on the performance of the coâ€precipitated <scp>Ni</scp> / <scp>ZrO₂</scp> catalyst in dry reforming of methane. Canadian Journal of Chemical Engineering, 2022, 100, .	1.7	9
134	Tuning the Cu ⁺ species of Cu-based catalysts for direct synthesis of ethanol from syngas. New Journal of Chemistry, 2021, 45, 20832-20839.	2.8	9
135	Effect of calcination temperature on performance of K-Cu/Zn/La/ZrO2 for isobutanol synthesis. Journal of Fuel Chemistry and Technology, 2013, 41, 868-874.	2.0	8
136	Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis. Journal of Fuel Chemistry and Technology, 2014, 42, 704-709.	2.0	8
137	Biomass-Based Carbon-Supported Sulfate Catalyst for Efficient Synthesis of Dimethoxymethane from Direct Oxidation of Dimethyl Ether. Journal of Physical Chemistry Letters, 2021, 12, 11795-11801.	4.6	8
138	Study on the Synergistic Catalysis of CeO ₂ Regulated Co ⁰ –Co ^{δ+} Dual Sites for Direct Synthesis of Higher Alcohols from Syngas. Industrial & Engineering Chemistry Research, 2022, 61, 3900-3909.	3.7	8
139	Selective formation of iso-butane from carbon dioxide and hydrogen over composite catalysts. Studies in Surface Science and Catalysis, 1998, 114, 435-438.	1.5	7
140	Design of a zeolite capsule catalyst by controlling the support size for the direct synthesis of isoparaffin. Research on Chemical Intermediates, 2008, 34, 771-779.	2.7	7
141	Insight into activation of CO and initial C2 oxygenate formation during synthesis of higher alcohols from syngas on the model catalyst K2O/Cu(111) surface. Applied Surface Science, 2019, 479, 55-63.	6.1	7
142	Copper Nanoparticles Decorated Inside or Outside Carbon Nanotubes Used for Methyl Acetate Hydrogenation. Journal of Nanoscience and Nanotechnology, 2013, 13, 1274-1277.	0.9	6
143	Hierarchical H-MOR Zeolite Supported Vanadium Oxide for Dimethyl Ether Direct Oxidation. Catalysts, 2019, 9, 628.	3.5	6
144	Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts. Journal of Fuel Chemistry and Technology, 2013, 41, 223-227.	2.0	5

#	Article	IF	CITATIONS
145	Highly Active SiO ₂ -supported Cu–ZnO Catalysts Prepared by Combustion Methods for Low-temperature Methanol Synthesis: Comparative Activity Test with or without SiO ₂ Support. Journal of the Japan Petroleum Institute, 2015, 58, 321-328.	0.6	5
146	Regulation of SBA-15, γ-Al2O3, ZSM-5 and MgO on Molybdenum oxide and Consequent Effect on DME Oxidation Reaction. ChemistrySelect, 2016, 1, 6127-6135.	1.5	5
147	Formic acid-assisted synthesis of highly efficient Cu/ZnO catalysts: effect of HCOOH/Cu molar ratios. Catalysis Science and Technology, 2016, 6, 4777-4785.	4.1	5
148	Role of Ga ³⁺ promoter in the direct synthesis of iso-butanol <i>via</i> syngas over a K–ZnO/ZnCr ₂ O ₄ catalyst. Catalysis Science and Technology, 2021, 11, 1077-1088.	4.1	5
149	CuCo alloy nanonets derived from CuCo ₂ O ₄ spinel oxides for higher alcohols synthesis from syngas. Catalysis Science and Technology, 2021, 11, 7617-7623.	4.1	5
150	Synthesis of Glycerol Carbonate by Transesterification of Glycerol and Dimethyl Carbonate over KF/γ-Al2O3Catalyst. Journal of the Brazilian Chemical Society, 2013, , .	0.6	4
151	Direct synthesis of isobutyraldehyde from methanol and ethanol on Cu–Mg/Ti-SBA-15 catalysts: the role of Ti. New Journal of Chemistry, 2017, 41, 9639-9648.	2.8	4
152	Study on the performance of F-T component modified KCuZrO2 catalyst for CO hydrogenation to isobutanol. Journal of Fuel Chemistry and Technology, 2020, 48, 302-310.	2.0	4
153	Effect of iron on ZrO2-based catalysts for direct synthesis of isobutanol from syngas. Fuel, 2021, 304, 121342.	6.4	4
154	Oxidative coupling of methane over Mo–Sn catalysts. Chemical Communications, 2021, 57, 13297-13300.	4.1	4
155	Effect of calcination temperature on the structure and performance of molybdenum-tin catalyst for DME oxidation. Journal of Fuel Chemistry and Technology, 2022, 50, 63-71.	2.0	4
156	Study of Methanol Conversion over Fe-Zn-Zr Catalyst. Journal of Natural Gas Chemistry, 2007, 16, 326-328.	1.8	3
157	Propane Aromatization Tuned by Tailoring Cr Modified Ga/ZSMâ€5 Catalysts. ChemCatChem, 2021, 13, 3601-3610.	3.7	3
158	Effects of calcination temperature on the catalytic performance of Ti(SO4)2/CS for DME direct oxidation to polyoxymethylene dimethyl ethers. Journal of Fuel Chemistry and Technology, 2021, 49, 72-79.	2.0	3
159	Low-temperature oxidation of methanol to dimethoxymethane over Mo-Sn catalyst. Journal of Fuel Chemistry and Technology, 2021, 49, 1487-1494.	2.0	3
160	Optimizing surface oxygen vacancy sites for CO hydrogenation to isobutanol over ZnCr catalyst. Fuel, 2022, 315, 123234.	6.4	3
161	Direct Conversion Syngas to Isobutanol over Ce/ZC Catalysts: Effect of Ce Promoter on the Catalytic Performance. ChemCatChem, 2022, 14, .	3.7	3
162	Effect of La2O3- decorated SiO2 on the performance of CuCo catalyst for direct conversion of syngas to ethanol. Fuel, 2022, 319, 123811.	6.4	2

#	Article	IF	CITATIONS
163	Promotional Effect of Dispersant Modification to ZnCr on CO ₂ Hydrogenation into Aromatics over Hybrid Catalysts. Industrial & Engineering Chemistry Research, 0, , .	3.7	2
164	Effect of different Mn salt precursors on Mn-H4SiW12O40/SiO2 used for dimethoxymethane synthesis from dimethyl ether oxidation. Journal of Fuel Chemistry and Technology, 2007, 35, 206-210.	2.0	1
165	Tin–Chromium-modified Nickel/Activated Carbon Catalyst for Vapor-phase Carbonylation of Methyl Acetate to Acetic Anhydride. Chemistry Letters, 2009, 38, 578-579.	1.3	1
166	Influence of Co Precursor and Pt Additive on Catalytic Performance of Highly Active Co/SiO ₂ -based Fischer-Tropsch Synthesis Catalysts. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 250-254.	0.2	1
167	Insights into the one-step ethanol synthesis through CO hydrogenation over surfactant-assisted preparation of CuCo/SiO2 catalyst. Fuel, 2022, 327, 125078.	6.4	1
168	Oxygenates Synthesis by Hydroformylation of 1-hexene over Co Nanoparticle Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 186-189.	0.2	0
169	Effect of alkalineâ€earth metals on synthesis of isobutyraldehyde from methanol and ethanol over Cuâ€MeO x /Tiâ€SBAâ€15 catalysts (Me = Mg, Ca, Sr, Ba). Canadian Journal of Chemical Engineering, 20 1139-1143.)1£797,	0
170	Understanding the correlation between calcination temperature and performance in lowâ€ŧemperature methanation over Niâ€Zr/Al 2 O 3 catalysts. Canadian Journal of Chemical Engineering, 2020, 98, 1525-1533.	1.7	0