Lucy J Colwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688029/publications.pdf

Version: 2024-02-01

304743 526287 3,265 28 22 27 h-index citations g-index papers 32 32 32 3996 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Using deep learning to annotate the protein universe. Nature Biotechnology, 2022, 40, 932-937.	17.5	133
2	Deep diversification of an AAV capsid protein by machine learning. Nature Biotechnology, 2021, 39, 691-696.	17.5	165
3	Improving Protein Function Annotation via Unsupervised Pre-training: Robustness, Efficiency, and Insights. , 2021, , .		5
4	Minding the gaps: The importance of navigating holes in protein fitness landscapes. Cell Systems, 2021, 12, 1019-1020.	6.2	2
5	Computational approaches to therapeutic antibody design: established methods and emerging trends. Briefings in Bioinformatics, 2020, 21, 1549-1567.	6.5	126
6	The Effect of Debiasing Protein–Ligand Binding Data on Generalization. Journal of Chemical Information and Modeling, 2020, 60, 56-62.	5.4	12
7	Glycation changes molecular organization and charge distribution in type I collagen fibrils. Scientific Reports, 2020, 10, 3397.	3.3	56
8	Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase–tRNA pairs. Nature Biotechnology, 2020, 38, 989-999.	17.5	67
9	A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots. Biophysical Journal, 2019, 117, 520-532.	0.5	12
10	Using attribution to decode binding mechanism in neural network models for chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11624-11629.	7.1	53
11	Collagen-Inspired Self-Assembly of Twisted Filaments. Physical Review Letters, 2019, 123, 238102.	7.8	3
12	Statistical and machine learning approaches to predicting protein–ligand interactions. Current Opinion in Structural Biology, 2018, 49, 123-128.	5.7	52
13	Comparative analysis of nanobody sequence and structure data. Proteins: Structure, Function and Bioinformatics, 2018, 86, 697-706.	2.6	151
14	Power law tails in phylogenetic systems. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 690-695.	7.1	59
15	Proline provides site-specific flexibility for in vivo collagen. Scientific Reports, 2018, 8, 13809.	3.3	40
16	Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Engineering, Design and Selection, 2018, 31, 267-275.	2.1	81
17	Optimal Design of Experiments by Combining Coarse and Fine Measurements. Physical Review Letters, 2017, 119, 208101.	7.8	5
18	Inferring interaction partners from protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12180-12185.	7.1	126

#	Article	IF	CITATION
19	Predicting protein–ligand affinity with a random matrix framework. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13564-13569.	7.1	24
20	Protein Sectors: Statistical Coupling Analysis versus Conservation. PLoS Computational Biology, 2015, 11, e1004091.	3.2	70
21	The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein. Journal of Biological Chemistry, 2015, 290, 22225-22235.	3.4	37
22	A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1063-71.	7.1	104
23	Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing. Cell, 2012, 149, 1607-1621.	28.9	478
24	The emergence of protein complexes: quaternary structure, dynamics and allostery. Biochemical Society Transactions, 2012, 40, 475-491.	3.4	75
25	The interface of protein structure, protein biophysics, and molecular evolution. Protein Science, 2012, 21, 769-785.	7.6	188
26	Protein 3D Structure Computed from Evolutionary Sequence Variation. PLoS ONE, 2011, 6, e28766.	2.5	975
27	Charge as a Selection Criterion for Translocation through the Nuclear Pore Complex. PLoS Computational Biology, 2010, 6, e1000747.	3.2	78
28	Action Potential Initiation in the Hodgkin-Huxley Model. PLoS Computational Biology, 2009, 5, e1000265.	3.2	25