László ÕGergely

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8687398/publications.pdf

Version: 2024-02-01

232 papers 50,169 citations

14614 66 h-index 2071 204 g-index

236 all docs

236 docs citations

times ranked

236

17690 citing authors

#	Article	IF	CITATIONS
1	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
2	Shock-waves in the gravitational wave compatible Horndeski theories with linear kinetic term. , 2022, , .		0
3	Spin flip-flops from secular dynamics of compact binaries. , 2022, , .		0
4	Doubly-foliable space-times and gauge-fixing of perturbations in scalar-tensor gravity theories. , 2022, , .		0
5	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
6	Stability analysis of the spin evolution fixed points in inspiraling compact binaries with black hole, neutron star, gravastar, or boson star components. Physical Review D, 2021, 103, .	1.6	3
7	Spin and quadrupolar effects in the secular evolution of precessing compact binaries with black hole, neutron star, gravastar, or boson star components. Physical Review D, 2021, 103, .	1.6	2
8	Spherically symmetric, static black holes with scalar hair, and naked singularities in nonminimally coupled <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi>k</mml:math> -essence. Physical Review D, 2021, 103, .	1.6	1
9	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
10	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
11	Minimally coupled scalar fields as imperfect fluids. Physical Review D, 2020, 102, .	1.6	3
12	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
13	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69
14	Gravitational dynamics in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo> <mml:mn>1</mml:mn><mml:mo>+< decomposed spacetime along nonorthogonal double foliations: Hamiltonian evolution and gauge fixing. Physical Review D, 2019, 99, .</mml:mo></mml:mrow></mml:math>	:/mml:mo: 1.6	>¿mml:mn>
15	The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories. Symmetry, 2019, 11, 616.	1.1	3
16	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
17	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
18	Very long baseline interferometry radio structure and radio brightening of the high-energy neutrino emitting blazar TXS 0506+056. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 483, L42-L46.	1.2	24

#	Article	IF	CITATIONS
19	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
20	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
21	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
22	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
23	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
24	Dark Matter as a Non-Relativistic Bose–Einstein Condensate with Massive Gravitons. Symmetry, 2018, 10, 520.	1.1	7
25	Light-Like Shockwaves in Scalar-Tensor Theories. Universe, 2018, 4, 44.	0.9	2
26	Flaring radio lanterns along the ridge line: long-term oscillatory motion in the jet of S5 1803+784. Monthly Notices of the Royal Astronomical Society, 2018, 478, 359-370.	1.6	11
27	Hamiltonian Dynamics of Doubly-Foliable Space-Times. Universe, 2018, 4, 9.	0.9	0
28	On the High-Energy Neutrino Emission from Active Galactic Nuclei. Universe, 2018, 4, 24.	0.9	3
28	On the High-Energy Neutrino Emission from Active Galactic Nuclei. Universe, 2018, 4, 24. Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 2018, 4, 40.	0.9	0
29	Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 2018, 4, 40.	0.9	0
30	Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 2018, 4, 40. Supernova explosions of massive stars and cosmic rays. Advances in Space Research, 2018, 62, 2773-2816. GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018,	0.9	0 15
29 30 31	Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 2018, 4, 40. Supernova explosions of massive stars and cosmic rays. Advances in Space Research, 2018, 62, 2773-2816. GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave	0.9 1.2 2.9	0 15 1,473
29 30 31 32	Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 2018, 4, 40. Supernova explosions of massive stars and cosmic rays. Advances in Space Research, 2018, 62, 2773-2816. GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102. Investigating the Poor Match among Different Precessing Gravitational Waveforms. Universe, 2018, 4,	0.9 1.2 2.9 2.9	0 15 1,473 85
30 31 32 33	Precessing Black Hole Binaries and Their Gravitational Radiation. Universe, 2018, 4, 40. Supernova explosions of massive stars and cosmic rays. Advances in Space Research, 2018, 62, 2773-2816. GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102. Investigating the Poor Match among Different Precessing Gravitational Waveforms. Universe, 2018, 4, 56. Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018,	0.9 1.2 2.9 2.9	0 15 1,473 85

#	Article	IF	Citations
37	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
38	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
39	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
40	Observation of Gravitational Waves from a Binary Black Hole Merger. , 2017, , 291-311.		45
41	A swirling jet in the quasar 1308+326. Astronomy and Astrophysics, 2017, 602, A29.	2.1	23
42	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
43	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
44	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
45	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
46	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
47	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
48	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
49	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
50	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
51	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
52	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
53	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
54	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64

#	Article	IF	CITATIONS
55	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
56	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96 , .	1.6	40
57	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
58	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
59	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
60	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
61	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
62	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
63	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
64	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
65	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
66	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
67	A flat-spectrum candidate for a track-type high-energy neutrino emission event, the case of blazar PKS 0723â°'008. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 466, L34-L38.	1.2	11
68	Comparative testing of dark matter models with 15 HSB and 15 LSB galaxies. Astronomy and Astrophysics, 2017, 608, A42.	2.1	1
69	Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves. Advances in High Energy Physics, 2017, 2017, 1-14.	0.5	6
70	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
71	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
72	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427

#	Article	IF	CITATIONS
7 3	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
74	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
7 5	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
76	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
77	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
78	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
79	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
80	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
81	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
82	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
83	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
84	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
85	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
86	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
87	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
88	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
89	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
90	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119

#	Article	IF	CITATIONS
91	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
92	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
93	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
94	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
95	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
96	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
97	Criticality and big brake singularities in the tachyonic evolutions of closed Friedmann universes with cold dark matter. Physical Review D, 2015, 91, .	1.6	0
98	Cosmological constraints on superconducting dark energy models. Physical Review D, 2015, 92, .	1.6	8
99	Spinning compact binary dynamics and chameleon orbits. Physical Review D, 2015, 91, .	1.6	11
100	Brane-world stars with a solid crust and vacuum exterior. Classical and Quantum Gravity, 2015, 32, 045015.	1.5	108
101	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
102	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
103	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
104	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
105	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
106	Constraining the parameters of the putative supermassive binary black hole in PG 1302–102 from its radio structure. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1290-1296.	1.6	28
107	GRAVITATIONAL WAVEFORMS FOR UNEQUAL MASS BLACK HOLE BINARIES DETECTABLE BY KAGRA. , 2015, , .		0
108	BOSE-EINSTEIN CONDENSATE DARK MATTER MODEL TESTED BY GALACTIC ROTATION CURVES. , 2015, , .		0

#	Article	IF	Citations
109	THE PARADOX OF SOFT SINGULARITY CROSSING AVOIDED BY DISTRIBUTIONAL COSMOLOGICAL QUANTITIES. , 2015, , .		0
110	PERTURBATIONS OF KANTOWSKI-SACHS MODELS., 2015, , .		0
111	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
112	Gravitational, shear and matter waves in Kantowski-Sachs cosmologies. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 042-042.	1.9	16
113	Effective field theory of modified gravity on the spherically symmetric background: Leading order dynamics and the odd-type perturbations. Physical Review D, 2014, 90, .	1.6	28
114	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
115	Soft singularity crossing and transformation of matter properties. , 2014, , .		0
116	A spinning supermassive black hole binary model consistent with VLBI observations of the S5 1928+738 jet. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1370-1382.	1.6	42
117	Combined cosmological tests of a bivalent tachyonic dark energy scalar field model. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 026-026.	1.9	8
118	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
119	Effective field theory of modified gravity with two scalar fields: Dark energy and dark matter. Physical Review D, 2014, 89, .	1.6	56
120	A single radio-emitting nucleus in the dual AGN candidate NGC 5515. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1509-1514.	1.6	11
121	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
122	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
123	Gravitational Waveforms for Black Hole Binaries with Unequal Masses. Springer Proceedings in Physics, 2014, , 455-458.	0.1	0
124	Modified Gravity Theories and Dark Matter Models Tested by Galactic Rotation Curves. Springer Proceedings in Physics, 2014, , 427-430.	0.1	0
125	Soft singularity crossing and transformation of matter properties. Physical Review D, 2013, 88, .	1.6	37
126	Weak and strong field approximations and circular orbits of the Kehagias‧fetsos spaceâ€time. Astronomische Nachrichten, 2013, 334, 1039-1042.	0.6	4

#	Article	IF	Citations
127	Constraints on supermassive black hole spins from observations of active galaxy jets. Astronomische Nachrichten, 2013, 334, 1024-1027.	0.6	3
128	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
129	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
130	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
131	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
132	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
133	Weak gravitational lensing by compact objects in fourth order gravity. Physical Review D, 2013, 88, .	1.6	8
134	Black hole tidal charge constrained by strong gravitational lensing. Astronomische Nachrichten, 2013, 334, 1047-1050.	0.6	14
135	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
136	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
137	Supermassive black hole mergers as dual sources for electromagnetic flares in the jet emission and gravitational waves. Astronomische Nachrichten, 2013, 334, 1032-1035.	0.6	3
138	Distributional cosmological quantities solve the paradox of soft singularity crossing., 2013,,.		2
139	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
140	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
141	Testing general relativity with laser accelerated electron beams. , 2012, , .		0
142	Weyl fluid dark matter model tested on the galactic scale by weak gravitational lensing. Physical Review D, 2012, 86, .	1.6	7
143	Paradox of soft singularity crossing and its resolution by distributional cosmological quantities. Physical Review D, 2012, 86, .	1.6	30
144	On the origin of X-shaped radio galaxies. Research in Astronomy and Astrophysics, 2012, 12, 127-146.	0.7	41

#	Article	IF	Citations
145	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
146	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
147	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
148	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
149	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
150	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
151	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
152	Spin-dominated waveforms for unequal mass compact binaries. Physical Review D, 2012, 86, .	1.6	2
153	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
154	3+1+1 DIMENSIONAL COVARIANT GRAVITATIONAL DYNAMICS ON AN ASYMMETRICALLY EMBEDDED BRANE: THE DIFFERENCE EQUATIONS. , 2012 , , .		0
155	VARIABLE TENSION BRANE-WORLDS., 2012, , .		0
156	Accretion processes in magnetically and tidally perturbed Schwarzschild black holes. Physical Review D, 2011, 84, .	1.6	2
157	Constraining Hořava-Lifshitz gravity by weak and strong gravitational lensing. Physical Review D, 2011, 84, .	1.6	28
158	Galactic rotation curves in brane world models. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3275-3290.	1.6	24
159	Maximal spin and energy conversion efficiency in a symbiotic system of black hole, disc and jet. Monthly Notices of the Royal Astronomical Society, 2011, 416, 991-1009.	1.6	5
160	Geometro-thermodynamics of tidal charged black holes. European Physical Journal C, 2011, 71, 1.	1.4	17
161	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	6.5	716
162	Recovering a spinning inspiralling compact binary waveform immersed in LIGO-like noise with spinning templates. Journal of Physics: Conference Series, 2010, 228, 012003.	0.3	0

#	Article	IF	CITATIONS
163	Secular momentum transport by gravitational waves from spinning compact binaries. Journal of Physics: Conference Series, 2010, 228, 012053.	0.3	2
164	Compact binary waveform recovery from the cross-correlated data of two detectors by matched filtering with spinning templates. Journal of Physics: Conference Series, 2010, 243, 012008.	0.3	0
165	3+1+1 dimensional covariant gravitational dynamics on an asymmetrically embedded brane: The average equations. Annalen Der Physik, 2010, 19, 249-253.	0.9	6
166	Covariant gravitational dynamics in 3+1+1 dimensions. Classical and Quantum Gravity, 2010, 27, 105009.	1.5	13
167	Supermassive black hole spin-flip during the inspiral. Classical and Quantum Gravity, 2010, 27, 194009.	1.5	10
168	Do supernovae favor tachyonic Big Brake instead of de Sitter?. , 2010, , .		1
169	Image formation in weak gravitational lensing by tidal charged black holes. Classical and Quantum Gravity, 2010, 27, 235006.	1.5	15
170	Spinning compact binary inspiral: Independent variables and dynamically preserved spin configurations. Physical Review D, 2010, 81, .	1.6	13
171	Will the tachyonic universe survive the big brake?. Physical Review D, 2010, 82, .	1.6	26
172	Spinning compact binary inspiral. II. Conservative angular dynamics. Physical Review D, 2010, 82, .	1.6	11
173	THE SPIN-FLIP PHENOMENON IN SUPERMASSIVE BLACK HOLE BINARY MERGERS. Astrophysical Journal, 2009, 697, 1621-1633.	1.6	66
174	ACTIVE GALACTIC NUCLEI: SOURCES FOR ULTRA HIGH ENERGY COSMIC RAYS. International Journal of Modern Physics D, 2009, 18, 1577-1581.	0.9	6
175	Renormalized spin coefficients in the accumulated orbital phase for unequal mass black hole binaries. Classical and Quantum Gravity, 2009, 26, 204006.	1.5	1
176	Active Galactic Nuclei: Sources for ultra high energy cosmic rays?. Nuclear Physics, Section B, Proceedings Supplements, 2009, 190, 61-78.	0.5	16
177	Second-order light deflection by tidal charged black holes on the brane. Classical and Quantum Gravity, 2009, 26, 145002.	1.5	18
178	Eötvös branes. Physical Review D, 2009, 79, .	1.6	24
179	Tachyon cosmology, supernovae data, and the big brake singularity. Physical Review D, 2009, 79, .	1.6	37
180	Renormalized second post-Newtonian spin contributions to the accumulated orbital phase for LISA sources. Physical Review D, 2009, 79, .	1.6	4

#	Article	IF	Citations
181	Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models. Physical Review D, 2008, 77, .	1.6	39
182	Friedmann branes with variable tension. Physical Review D, 2008, 78, .	1.6	50
183	Gravitational dynamics ins+1+1dimensions II. Hamiltonian theory. Physical Review D, 2008, 77, .	1.6	22
184	On the validity of the five-dimensional Birkhoff theorem: the tale of an exceptional case. Classical and Quantum Gravity, 2008, 25, 165016.	1.5	5
185	Supermassive binary black hole mergers. Journal of Physics: Conference Series, 2008, 122, 012040.	0.3	8
186	BLACK HOLES ON COSMOLOGICAL BRANES., 2008,,.		0
187	THE SECOND POST-NEWTONIAN ORDER GENERALIZED KEPLER EQUATION. , 2008, , .		0
188	HAMILTONIAN THEORY OF BRANE-WORLD GRAVITY., 2008,,.		0
189	ORBITAL PHASE IN INSPIRALLING COMPACT BINARIES. , 2008, , .		0
190	IS DARK MATTER FUTILE ON THE BRANE?. , 2008, , .		0
191	CANONICAL ANALYSIS OF RADIATING ATMOSPHERES OF STARS IN EQUILIBRIUM., 2008, , .		0
192	Black holes and dark energy from gravitational collapse on the brane. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 027-027.	1.9	29
193	Asymmetric Swiss-cheese brane-worlds. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 007-007.	1.9	12
194	Cosmological tests of generalized RS brane-worlds with Weyl fluid. AIP Conference Proceedings, 2007, , .	0.3	5
195	The luminosity-redshift relation in brane-worlds: I. Analytical results. PMC Physics A, 2007, 1, 4.	9.1	17
196	The luminosity-redshift relation in brane-worlds: II. Confrontation with experimental data. PMC Physics A, 2007, 1 , .	9.1	17
197	Geometrodynamics in a spherically symmetric, static crossflow of null dust. Physical Review D, 2006, 74, .	1.6	6
198	Brane-world cosmology with black strings. Physical Review D, 2006, 74, .	1.6	62

#	Article	lF	CITATIONS
199	New variables for brane-world gravity. AIP Conference Proceedings, 2006, , .	0.3	O
200	An Efficient Method for the Evaluation of Secular Effects in the Perturbed Keplerian Motion. Astrophysical Journal, Supplement Series, 2006, 167, 286-291.	3.0	3
201	Semi-transparent brane-worlds. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 020-020.	1.9	6
202	Irradiated asymmetric Friedmann branes. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 022-022.	1.9	16
203	Self-interaction spin effects in inspiralling compact binaries. Physical Review D, 2005, 71, .	1.6	115
204	No Swiss-cheese universe on the brane. Physical Review D, 2005, 71, .	1.6	9
205	Gravitational dynamics ins+1+1dimensions. Physical Review D, 2005, 72, .	1.6	15
206	Asymmetric brane-worlds with induced gravity. Physical Review D, 2005, 71, .	1.6	26
207	Kepler equation for inspiralling compact binaries. Physical Review D, 2005, 72, .	1.6	27
208	A homogeneous braneworld universe. Classical and Quantum Gravity, 2004, 21, 935-940.	1.5	13
209	Asymmetric radiating brane-world. Physical Review D, 2004, 70, .	1.6	18
210	Gravitational radiation reaction in compact binary systems: Contribution of the quadrupole-monopole interaction. Physical Review D, 2003, 67, .	1.6	28
211	Generalized Friedmann branes. Physical Review D, 2003, 68, .	1.6	63
212	Gravitational radiation reaction in compact binary systems: Contribution of the magnetic dipole–magnetic dipole interaction. Physical Review D, 2003, 68, .	1.6	11
213	Brane-world generalizations of the Einstein static universe. Classical and Quantum Gravity, 2002, 19, 213-221.	1.5	7 5
214	Linear Einstein equations and Kerr\$ndash\$Schild maps. Classical and Quantum Gravity, 2002, 19, 2515-2523.	1.5	7
215	Wormholes, naked singularities, and universes of ghost radiation. Physical Review D, 2002, 65, .	1.6	11
216	On Hamiltonian Formulations of the SchrĶdinger System. Annals of Physics, 2002, 298, 394-402.	1.0	10

#	Article	IF	Citations
217	The True―and Eccentricâ€Anomaly Parameterizations of the Perturbed Kepler Motion. Astrophysical Journal, Supplement Series, 2000, 126, 79-84.	3.0	11
218	The geometry of the Barbour-Bertotti theories: I. The reduction process. Classical and Quantum Gravity, 2000, 17, 1949-1962.	1.5	20
219	The geometry of the Barbour-Bertotti theories: II. The three-body problem. Classical and Quantum Gravity, 2000, 17, 1963-1978.	1.5	21
220	Second post-Newtonian radiative evolution of the relative orientations of angular momenta in spinning compact binaries. Physical Review D, 2000, 62, .	1.6	29
221	Rotating perfect fluid sources of the NUT metric. Classical and Quantum Gravity, 1999, 16, 1667-1675.	1.5	11
222	Spherically symmetric closed universe as an example of a 2D dilatonic model. Physical Review D, 1999, 59, .	1.6	8
223	Spin-spin effects in radiating compact binaries. Physical Review D, 1999, 61, .	1.6	39
224	Comment on "The complete Schwarzschild interior and exterior solution in the harmonic coordinate system―[J. Math. Phys. 39, 6086 (1998)]. Journal of Mathematical Physics, 1999, 40, 4177-4178.	0.5	2
225	Spin effects in gravitational radiation back reaction. I. The Lense-Thirring approximation. Physical Review D, 1998, 57, 876-884.	1.6	28
226	Spin effects in gravitational radiation back reaction. II. Finite mass effects. Physical Review D, 1998, 57, 3423-3432.	1.6	24
227	Spin effects in gravitational radiation back reaction. III. Compact binaries with two spinning components. Physical Review D, 1998, 58, .	1.6	45
228	Spherically symmetric static solution for colliding null dust. Physical Review D, 1998, 58, .	1.6	21
229	Vacuum Kerr-Schild metrics generated by nontwisting congruences. Annalen Der Physik, 1994, 506, 609-619.	0.9	3
230	Kerr–Schild metrics revisited. II. The complete vacuum solution. Journal of Mathematical Physics, 1994, 35, 2448-2462.	0.5	6
231	Kerr–Schild metrics revisited. I. The ground state. Journal of Mathematical Physics, 1994, 35, 2438-2447.	0.5	5
232	Solution of the vacuum Kerr-Schild problem. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 181, 345-348.	0.9	3