Insuk Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8687397/publications.pdf

Version: 2024-02-01

92	7,776	35	83
papers	citations	h-index	g-index
99	99	99	11009
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	HumanNet v3: an improved database of human gene networks for disease research. Nucleic Acids Research, 2022, 50, D632-D639.	14.5	53
2	The importance of enhancer methylation for epigenetic regulation of tumorigenesis in squamous lung cancer. Experimental and Molecular Medicine, 2022, 54, 12-22.	7.7	12
3	Viral coinfection promotes tuberculosis immunopathogenesis by type I IFN signaling-dependent impediment of Th1 cell pulmonary influx. Nature Communications, 2022, 13 , .	12.8	11
4	Systems biology analysis identifies TNFRSF9 as a functional marker of tumor-infiltrating regulatory T-cell enabling clinical outcome prediction in lung cancer. Computational and Structural Biotechnology Journal, 2021, 19, 860-868.	4.1	12
5	Chaperone-like protein DAY plays critical roles in photomorphogenesis. Nature Communications, 2021, 12, 4194.	12.8	5
6	Human reference gut microbiome catalog including newly assembled genomes from under-represented Asian metagenomes. Genome Medicine, 2021, 13, 134.	8.2	47
7	Genome-Wide Association Studies in Arabidopsis thaliana: Statistical Analysis and Network-Based Augmentation of Signals. Methods in Molecular Biology, 2021, 2200, 187-210.	0.9	3
8	Dysregulation of TFH-B-TRM lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer. Nature Communications, 2021, 12, 6068.	12.8	31
9	VirtualCytometry: a webserver for evaluating immune cell differentiation using single-cell RNA sequencing data. Bioinformatics, 2020, 36, 546-551.	4.1	8
10	Single-cell network biology for resolving cellular heterogeneity in human diseases. Experimental and Molecular Medicine, 2020, 52, 1798-1808.	7.7	72
11	Genome-wide identification of differentially methylated promoters and enhancers associated with response to anti-PD-1 therapy in non-small cell lung cancer. Experimental and Molecular Medicine, 2020, 52, 1550-1563.	7.7	99
12	Tumor-Infiltrating Regulatory T-cell Accumulation in the Tumor Microenvironment Is Mediated by IL33/ST2 Signaling. Cancer Immunology Research, 2020, 8, 1393-1406.	3.4	28
13	Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation. Computational and Structural Biotechnology Journal, 2020, 18, 1429-1439.	4.1	91
14	Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Medicine, 2020, 12, 22.	8.2	98
15	BarleyNet: A Network-Based Functional Omics Analysis Server for Cultivated Barley, Hordeum vulgare L Frontiers in Plant Science, 2020, 11, 98.	3.6	17
16	Construction of Functional Protein Networks Using Domain Profile Associations. Methods in Molecular Biology, 2020, 2074, 35-44.	0.9	4
17	BiomeNet: a database for construction and analysis of functional interaction networks for any species with a sequenced genome. Bioinformatics, 2019, 36, 1584-1589.	4.1	6
18	Pathway-specific protein domains are predictive for human diseases. PLoS Computational Biology, 2019, 15, e1007052.	3.2	8

#	Article	IF	Citations
19	Network Integrative Genomic and Transcriptomic Analysis of Carbapenem-Resistant Klebsiella pneumoniae Strains Identifies Genes for Antibiotic Resistance and Virulence. MSystems, 2019, 4, .	3.8	15
20	MaizeNet: a coâ€functional network for networkâ€assisted systems genetics in <i>Zea mays</i> Plant Journal, 2019, 99, 571-582.	5.7	22
21	HumanNet v2: human gene networks for disease research. Nucleic Acids Research, 2019, 47, D573-D580.	14.5	161
22	Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server. Methods in Molecular Biology, 2019, 1907, 37-50.	0.9	1
23	NGSEA: Network-Based Gene Set Enrichment Analysis for Interpreting Gene Expression Phenotypes with Functional Gene Sets. Molecules and Cells, 2019, 42, 579-588.	2.6	13
24	A Genome-Scale Co-Functional Network of Genes Can Accurately Reconstruct Regulatory Circuits Controlled by Two-Component Signaling Systems. Molecules and Cells, 2019, 42, 166-174.	2.6	7
25	araGWAB: Network-based boosting of genome-wide association studies in Arabidopsis thaliana. Scientific Reports, 2018, 8, 2925.	3.3	21
26	Direct Conversion of Mouse Fibroblasts into Cholangiocyte Progenitor Cells. Stem Cell Reports, 2018, 10, 1522-1536.	4.8	11
27	TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Research, 2018, 46, D380-D386.	14.5	1,288
28	Network-based genetic investigation of virulence-associated phenotypes in methicillin-resistant Staphylococcus aureus. Scientific Reports, 2018, 8, 10796.	3.3	5
29	From sequencing data to gene functions: co-functional network approaches. Animal Cells and Systems, 2017, 21, 77-83.	2.2	27
30	WheatNet: a Genome-Scale Functional Network for Hexaploid Bread Wheat, Triticum aestivum. Molecular Plant, 2017, 10, 1133-1136.	8.3	29
31	Network-Based Gene Function Prediction in Mouse and Other Model Vertebrates Using MouseNet Server. Methods in Molecular Biology, 2017, 1611, 183-198.	0.9	3
32	GWAB: a web server for the network-based boosting of human genome-wide association data. Nucleic Acids Research, 2017, 45, W154-W161.	14.5	29
33	Construction of Functional Gene Networks Using Phylogenetic Profiles. Methods in Molecular Biology, 2017, 1526, 87-98.	0.9	10
34	AraNet: A Network Biology Server for Arabidopsis thaliana and Other Non-Model Plant Species. Methods in Molecular Biology, 2017, 1629, 225-238.	0.9	17
35	TomatoNet: A Genome-wide Co-functional Network for Unveiling Complex Traits of Tomato, a Model Crop for Fleshy Fruits. Molecular Plant, 2017, 10, 652-655.	8.3	18
36	COEXPEDIA: exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH). Nucleic Acids Research, 2017, 45, D389-D396.	14.5	84

#	Article	IF	Citations
37	SoyNet: a database of co-functional networks for soybeanGlycine max. Nucleic Acids Research, 2017, 45, D1082-D1089.	14.5	56
38	Functional gene networks based on the gene neighborhood in metagenomes. Animal Cells and Systems, 2017, 21, 301-306.	2.2	10
39	Network perturbation by recurrent regulatory variants in cancer. PLoS Computational Biology, 2017, 13, e1005449.	3.2	5
40	Microvesicles from brain-extractâ€"treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Scientific Reports, 2016, 6, 33038.	3.3	84
41	Generation of Integration-free Induced Neural Stem Cells from Mouse Fibroblasts. Journal of Biological Chemistry, 2016, 291, 14199-14212.	3.4	24
42	MouseNet v2: a database of gene networks for studying the laboratory mouse and eight other model vertebrates. Nucleic Acids Research, 2016, 44, D848-D854.	14.5	40
43	Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource. Nucleic Acids Research, 2016, 44, gkw897.	14.5	24
44	Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 26223.	3.3	28
45	A single gene of a commensal microbe affects host susceptibility to enteric infection. Nature Communications, 2016, 7, 11606.	12.8	31
46	Weighted mutual information analysis substantially improves domain-based functional network models. Bioinformatics, 2016, 32, 2824-2830.	4.1	20
47	MUFFINN: cancer gene discovery via network analysis of somatic mutation data. Genome Biology, 2016, 17, 129.	8.8	126
48	An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency. Nucleic Acids Research, 2016, 44, 1203-1215.	14.5	20
49	Systematic comparison of variant calling pipelines using gold standard personal exome variants. Scientific Reports, 2015, 5, 17875.	3.3	284
50	TRRUST: a reference database of human transcriptional regulatory interactions. Scientific Reports, 2015, 5, 11432.	3.3	339
51	FlyNet: a versatile network prioritization server for the <i>Drosophila </i> community. Nucleic Acids Research, 2015, 43, W91-W97.	14.5	18
52	Modes of Interaction between Individuals Dominate the Topologies of Real World Networks. PLoS ONE, 2015, 10, e0121248.	2.5	4
53	Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Scientific Reports, 2015, 5, 8767.	3.3	31
54	Network-assisted crop systems genetics: network inference and integrative analysis. Current Opinion in Plant Biology, 2015, 24, 61-70.	7.1	40

#	Article	IF	CITATIONS
55	Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network Â. Plant Physiology, 2015, 167, 1685-1698.	4.8	55
56	Editorial overview: Genome studies and molecular genetics: data-driven approaches to genotype-to-phenotype studies in crops. Current Opinion in Plant Biology, 2015, 24, iv-vi.	7.1	1
57	AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Research, 2015, 43, D996-D1002.	14.5	150
58	EcoliNet: a database of cofunctional gene network for Escherichia coli. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	31
59	RiceNet v2: an improved network prioritization server for rice genes. Nucleic Acids Research, 2015, 43, W122-W127.	14.5	95
60	Network-assisted approaches for human disease research. Animal Cells and Systems, 2015, 19, 231-235.	2.2	13
61	Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization. PLoS ONE, 2015, 10, e0130589.	2.5	15
62	Co-Inheritance Analysis within the Domains of Life Substantially Improves Network Inference by Phylogenetic Profiling. PLoS ONE, 2015, 10, e0139006.	2.5	22
63	WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis elegans. Nucleic Acids Research, 2014, 42, W76-W82.	14.5	59
64	YeastNet v3: a public database of data-specific and integrated functional gene networks for <i>Saccharomyces cerevisiae</i> Nucleic Acids Research, 2014, 42, D731-D736.	14.5	75
65	MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network. Nucleic Acids Research, 2014, 42, W147-W153.	14.5	16
66	Complementarity between distance- and probability-based methods of gene neighbourhood identification for pathway reconstruction. Molecular BioSystems, 2014, 10, 24-29.	2.9	25
67	JiffyNet: a web-based instant protein network modeler for newly sequenced species. Nucleic Acids Research, 2013, 41, W192-W197.	14.5	31
68	Network approaches to the genetic dissection of phenotypes in animals and humans. Animal Cells and Systems, 2013, 17, 75-79.	2.2	15
69	RIDDLE: Reflective diffusion and local extension reveal functional associations for unannotated gene sets via proximity in a gene network. Genome Biology, 2012, 13, R125.	9.6	16
70	Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of "Unknown Functionâ€, Frontiers in Plant Science, 2012, 3, 15.	3.6	82
71	Towards understanding how molecular networks evolve in plants. Current Opinion in Plant Biology, 2012, 15, 177-184.	7.1	61
72	Probabilistic functional gene societies. Progress in Biophysics and Molecular Biology, 2011, 106, 435-442.	2.9	10

#	Article	IF	CITATIONS
73	Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network. Nature Protocols, 2011, 6, 1429-1442.	12.0	41
74	Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18548-18553.	7.1	170
75	Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Research, 2011, 21, 1109-1121.	5 . 5	646
76	Towards Establishment of a Rice Stress Response Interactome. PLoS Genetics, 2011, 7, e1002020.	3.5	199
77	Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nature Biotechnology, 2010, 28, 149-156.	17.5	332
78	Predicting genetic modifier loci using functional gene networks. Genome Research, 2010, 20, 1143-1153.	5.5	83
79	Assessment of effectiveness of the network-guided genetic screen. Molecular BioSystems, 2010, 6, 1803.	2.9	3
80	Rational Extension of the Ribosome Biogenesis Pathway Using Network-Guided Genetics. PLoS Biology, 2009, 7, e1000213.	5.6	156
81	Effects of Functional Bias on Supervised Learning of a Gene Network Model. Methods in Molecular Biology, 2009, 541, 463-475.	0.9	12
82	A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nature Genetics, 2008, 40, 181-188.	21.4	284
83	Integrating Functional Genomics Data. Methods in Molecular Biology, 2008, 453, 267-278.	0.9	8
84	Network-guided genetic screening: building, testing and using gene networks to predict gene function. Briefings in Functional Genomics & Proteomics, 2008, 7, 217-227.	3.8	24
85	24 Bioinformatic Prediction of Yeast Gene Function. Methods in Microbiology, 2007, , 597-628.	0.8	4
86	Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes. Genome Biology, 2007, 8, R258.	9.6	87
87	An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae. PLoS ONE, 2007, 2, e988.	2.5	174
88	A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics, 2007, 8, 236.	2.6	239
89	Protein interaction networks from yeast to human. Current Opinion in Structural Biology, 2004, 14, 292-299.	5.7	323
90	A Probabilistic Functional Network of Yeast Genes. Science, 2004, 306, 1555-1558.	12.6	640

#	Article	lF	CITATIONS
91	The Conserved CA/TG motif at Mu termini: T Specifies Stable Transpososome Assembly. Journal of Molecular Biology, 2003, 330, 261-275.	4.2	16
92	Patterns of sequence conservation at termini of long terminal repeat (LTR) retrotransposons and DNA transposons in the human genome: lessons from phage Mu. Nucleic Acids Research, 2003, 31, 4531-4540.	14.5	10