Julia M Gauglitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8687221/publications.pdf

Version: 2024-02-01

33 14,834 20 34
papers citations h-index g-index

51 51 51 17875
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry, 2022, 14, 100-109.	13.6	30
2	Perspective: A Framework for Addressing Dynamic Food Consumption Processes. Advances in Nutrition, 2022, 13, 992-1008.	6.4	6
3	The Host-Microbiome Response to Hyperbaric Oxygen Therapy in Ulcerative Colitis Patients. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 35-53.	4.5	10
4	foodMASST a mass spectrometry search tool for foods and beverages. Npj Science of Food, 2022, 6, 22.	5.5	9
5	Multiomic Analyses of Nascent Preterm Infant Microbiomes Differentiation Suggest Opportunities for Targeted Intervention. Advanced Biology, 2022, 6, .	2,5	4
6	The molecular impact of life in an indoor environment. Science Advances, 2022, 8, .	10.3	3
7	Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nature Chemical Biology, 2021, 17, 146-151.	8.0	73
8	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	8.0	81
9	Dynamic proteome response of a marine Vibrio to a gradient of iron and ferrioxamine bioavailability. Marine Chemistry, 2021, 229, 103913.	2.3	5
10	EMPress Enables Tree-Guided, Interactive, and Exploratory Analyses of Multi-omic Data Sets. MSystems, 2021, 6, .	3.8	36
11	Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature Communications, 2021, 12, 3832.	12.8	119
12	Chemical Proportionality within Molecular Networks. Analytical Chemistry, 2021, 93, 12833-12839.	6.5	22
13	Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chemistry, 2020, 302, 125290.	8.2	52
14	A UHPLC-HRMS based metabolomics and chemoinformatics approach to chemically distinguish †super foods' from a variety of plant-based foods. Food Chemistry, 2020, 313, 126071.	8.2	18
15	Mass spectrometry searches using MASST. Nature Biotechnology, 2020, 38, 23-26.	17.5	160
16	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	19.0	650
17	ReDU: a framework to find and reanalyze public mass spectrometry data. Nature Methods, 2020, 17, 901-904.	19.0	79
18	Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 2020, 15, 1954-1991.	12.0	344

#	Article	IF	CITATIONS
19	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	27.8	316
20	Metabolome-Informed Microbiome Analysis Refines Metadata Classifications and Reveals Unexpected Medication Transfer in Captive Cheetahs. MSystems, 2020, 5, .	3.8	12
21	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37, 852-857.	17.5	11,167
22	Active nitrogen fixation by Crocosphaera expands their niche despite the presence of ammonium $\hat{a} \in \text{``A}$ case study. Scientific Reports, 2019, 9, 15064.	3.3	9
23	Alternative Ready-To-Use Therapeutic Food Yields Less Recovery Than the Standard for Treating Acute Malnutrition in Children From Ghana. Global Health, Science and Practice, 2019, 7, 203-214.	1.7	24
24	Quantifying Oxygen Management and Temperature and Light Dependencies of Nitrogen Fixation by Crocosphaera watsonii. MSphere, 2019, 4, .	2.9	26
25	Wildlife-microbiome interactions and disease: exploring opportunities for disease mitigation across ecological scales. Drug Discovery Today: Disease Models, 2018, 28, 105-115.	1.2	25
26	Optical Signatures of Dissolved Organic Matter Transformation in the Global Ocean. Frontiers in Marine Science, $2016, 2, \ldots$	2.5	30
27	Amphiphilic siderophore production by oil-associating microbes. Metallomics, 2014, 6, 1150-1155.	2.4	35
28	Microbial Tailoring of Acyl Peptidic Siderophores. Biochemistry, 2014, 53, 2624-2631.	2.5	14
29	Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species. Journal of Biological Inorganic Chemistry, 2013, 18, 489-497.	2.6	21
30	A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. Journal of Inorganic Biochemistry, 2012, 107, 90-95.	3.5	28
31	Identification of new members within suites of amphiphilic marine siderophores. BioMetals, 2011, 24, 85-92.	4.1	34
32	Chemistry of Marine Ligands and Siderophores. Annual Review of Marine Science, 2009, 1, 43-63.	11.6	298
33	Both Incubation Temperature and Posthatching Temperature Affect Swimming Performance and Morphology of Wood Frog Tadpoles (Rana sylvatica). Physiological and Biochemical Zoology, 2006, 79, 140-149.	1.5	51