Nicola Piana Agostinetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2009 L'Aquila (central Italy) M _W 6.3 earthquake: Main shock and aftershocks. Geophysical Research Letters, 2009, 36, .	4.0	291
2	Temporal variation of seismic velocity and anisotropy before the 2009 M _W 6.3 L'Aquila earthquake, Italy. Geology, 2010, 38, 1015-1018.	4.4	146
3	Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy. Journal of Geophysical Research, 2010, 115, .	3.3	124
4	Combining controlled-source seismology and receiver function information to derive 3-D Moho topography for Italy. Geophysical Journal International, 2013, 194, 1050-1068.	2.4	116
5	Moho depth and <i>V</i> _{<i>p</i>} / <i>V</i> _{<i>s</i>} ratio in peninsular Italy from teleseismic receiver functions. Journal of Geophysical Research, 2009, 114, .	3.3	110
6	The 2012 Emilia seismic sequence (Northern Italy): Imaging the thrust fault system by accurate aftershock location. Tectonophysics, 2014, 622, 44-55.	2.2	78
7	Local three-dimensional earthquake tomography by trans-dimensional Monte Carlo sampling. Geophysical Journal International, 2015, 201, 1598-1617.	2.4	64
8	Receiver function inversion by trans-dimensional Monte Carlo sampling. Geophysical Journal International, 2010, , .	2.4	56
9	Deep structure of the Colli Albani volcanic district (central Italy) from receiver functions analysis. Journal of Geophysical Research, 2008, 113, .	3.3	52
10	Crustal structure in the Southern Apennines from teleseismic receiver functions. Geology, 2008, 36, 155.	4.4	51
11	From underplating to delamination-retreat in the northern Apennines. Earth and Planetary Science Letters, 2014, 403, 108-116.	4.4	49
12	Insights into the evolution of the Italian lithospheric structure from S receiver function analysis. Earth and Planetary Science Letters, 2012, 345-348, 49-59.	4.4	45
13	Crustal Structure and Moho Geometry beneath the Northern Apennines (Italy). Geophysical Research Letters, 2002, 29, 60-1-60-4.	4.0	44
14	Fluid migration in continental subduction: The Northern Apennines case study. Earth and Planetary Science Letters, 2011, 302, 267-278.	4.4	37
15	Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber. Geophysical Journal International, 2008, 175, 1298-1308.	2.4	35
16	Numerical inversion of deformation caused by pressure sources: application to Mount Etna (Italy). Geophysical Journal International, 2008, 172, 873-884.	2.4	35
17	Modeling Earth's post-glacial rebound. Eos, 2004, 85, 62.	0.1	34
18	Imaging the subducted slab under the Calabrian Arc, Italy, from receiver function analysis. Lithosphere, 2009, 1, 131-138.	1.4	33

NICOLA PIANA AGOSTINETTI

#	Article	IF	CITATIONS
19	A reversible-jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data. Computers and Geosciences, 2018, 113, 94-105.	4.2	33
20	Possible fault plane in a seismic gap area of the southern Apennines (Italy) revealed by receiver function analysis. Journal of Geophysical Research, 2005, 110, .	3.3	30
21	Crustal and upper mantle responses to lithospheric segmentation in the northern Apennines. Tectonics, 2015, 34, 648-661.	2.8	29
22	The fate of the downgoing oceanic plate: Insight from the Northern Cascadia subduction zone. Earth and Planetary Science Letters, 2014, 408, 237-251.	4.4	28
23	Control of the 2009 L'Aquila earthquake, central Italy, by a highâ€velocity structure: A receiver function study. Journal of Geophysical Research, 2010, 115, .	3.3	27
24	Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation. Physics of the Earth and Planetary Interiors, 2018, 277, 99-112.	1.9	26
25	Mantle wedge anisotropy in Southern Tyrrhenian Subduction Zone (Italy), from receiver function analysis. Tectonophysics, 2008, 462, 35-48.	2.2	25
26	Crustal structure above a retreating trench: Receiver function study of the northern Apennines orogen. Earth and Planetary Science Letters, 2008, 275, 211-220.	4.4	25
27	High frequency seismic waves and slab structures beneath Italy. Earth and Planetary Science Letters, 2014, 391, 212-223.	4.4	23
28	Apulian crust: Top to bottom. Journal of Geodynamics, 2014, 82, 125-137.	1.6	23
29	Deep Structure of Northern Apennines Subduction Orogen (Italy) as Revealed by a Joint Interpretation of Passive and Active Seismic Data. Geophysical Research Letters, 2018, 45, 4017-4024.	4.0	22
30	Assessing uncertainties in high-resolution, multifrequency receiver-function inversion: A comparison with borehole data. Geophysics, 2018, 83, KS11-KS22.	2.6	20
31	Sedimentary basin exploration with receiver functions: Seismic structure and anisotropy of the Dublin Basin (Ireland). Geophysics, 2017, 82, KS41-KS55.	2.6	19
32	Moho depth and Vp/Vs in Ireland from teleseismic receiver functions analysis. Geophysical Journal International, 2014, 199, 561-579.	2.4	18
33	Crustal structure and Moho depth profile crossing the central Apennines (Italy) along the N42° parallel. Journal of Geophysical Research, 2008, 113, .	3.3	17
34	Erosion of the continental lithosphere at the cusps of the Calabrian arc: Evidence from <i>S</i> receiver functions analysis. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	17
35	Discovering geothermal supercritical fluids: a new frontier for seismic exploration. Scientific Reports, 2017, 7, 14592.	3.3	17
36	A semi-automated method for the detection of seismic anisotropy at depth via receiver function analysis. Geophysical Journal International, 2016, 205, 1589-1612.	2.4	16

Nicola Piana Agostinetti

#	Article	IF	CITATIONS
37	Flexible Coupling in Joint Inversions: A Bayesian Structure Decoupling Algorithm. Journal of Geophysical Research: Solid Earth, 2018, 123, 8798-8826.	3.4	16
38	Analysis of small magnitude seismic sequences along the Northern Apennines (Italy). Tectonophysics, 2009, 476, 136-144.	2.2	14
39	Lithospheric fault and kinematic decoupling of the Apennines system across the Pollino range. Geophysical Research Letters, 2016, 43, 3201-3207.	4.0	14
40	Sedimentary basin investigation using receiver function: an East African Rift case study. Geophysical Journal International, 2018, 215, 2105-2113.	2.4	13
41	Mantle viscosity inference: a comparison between simulated annealing and neighbourhood algorithm inversion methods. Geophysical Journal International, 2004, 157, 890-900.	2.4	12
42	The structure of the Moho in the Northern Apennines: Evidence for an incipient slab tear fault?. Tectonophysics, 2015, 655, 88-96.	2.2	12
43	Bayesian source inference of the 1993-1997 deformation at Mount Etna (Italy) by numerical solutions. Geophysical Journal International, 2009, 177, 806-814.	2.4	11
44	The Deep Structure of the Larderello-travale Geothermal Field (Italy) from Integrated, Passive Seismic Investigations. Energy Procedia, 2014, 59, 227-234.	1.8	11
45	Seismic swarms and diffuse fracturing within Triassic evaporites fed by deep degassing along the lowâ€angle Alto Tiberina normal fault (central Apennines, Italy). Journal of Geophysical Research: Solid Earth, 2017, 122, 308-331.	3.4	11
46	Inferring Crustal Temperatures Beneath Italy From Joint Inversion of Receiver Functions and Surface Waves. Journal of Geophysical Research: Solid Earth, 2019, 124, 8771-8785.	3.4	10
47	Crustal structure at colliding plates boundary from receiver functions analysis: A close look beneath the northern Apennines (Italy). Geophysical Research Letters, 2008, 35, .	4.0	9
48	Orogen-parallel variability in 3D seismicity distribution, Northern Apennines (Italy): Evidence for a slab tear fault?. Journal of Geodynamics, 2014, 82, 110-117.	1.6	9
49	Shear-velocity and anisotropy structure of a retreating extensional forearc (Tuscany, Italy) from receiver functions inversion. Geophysical Journal International, 2010, 181, 545-556.	2.4	8
50	Acrossâ€Fault Velocity Gradients and Slip Behavior of the San Andreas Fault Near Parkfield. Geophysical Research Letters, 2020, 47, e2019GL084480.	4.0	8
51	The 2011–2014 Pollino Seismic Swarm: Complex Fault Systems Imaged by 1D Refined Location and Shear Wave Splitting Analysis at the Apennines–Calabrian Arc Boundary. Frontiers in Earth Science, 2021, 9, .	1.8	8
52	Deep structure of the Southern Apennines as imaged by active and passive seismic data along the CROP-04 (crustal) reflection seismic profile. Journal of the Geological Society, 2019, 176, 1284-1290.	2.1	7
53	Distributed acoustic sensing as a tool for subsurface mapping and seismic event monitoring: a proof of concept. Solid Earth, 2022, 13, 449-468.	2.8	7
54	Sedimentary basins investigation using teleseismic Pâ€wave time delays. Geophysical Prospecting, 2019, 67, 1676-1685.	1.9	6

#	Article	IF	CITATIONS
55	Mantle upwelling beneath the Apennines identified by receiver function imaging. Scientific Reports, 2020, 10, 19760.	3.3	6
56	Moho depth of the British Isles: a probabilistic perspective. Geophysical Journal International, 2020, 221, 1384-1401.	2.4	6
57	Crustal structure and deformation across a mature slab tear zone: the case of southern Tyrrhenian subduction (Italy). Geophysical Research Letters, 2016, 43, 12,380.	4.0	5
58	Change-point analysis of <i>VP</i> / <i>VS</i> ratio time-series using a trans-dimensional McMC algorithm: applied to the Alto Tiberina Near Fault Observatory seismic network (Northern Apennines,) Tj ETQq0 0	02gBT /Ov	vestlock 10 Tr
59	Estimating lateral and vertical resolution in receiver function data for shallow crust exploration. Geophysical Journal International, 2019, 218, 2045-2053.	2.4	4
60	Insights Into the Origin and Deformation Style of the Continental Moho: A Caseâ€Study From the Western Alps (Italy). Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021319.	3.4	4
61	Modeling of Anisotropy in the Lithosphere and Asthenosphere for Real Earth Cases: A Critical Assessment of the Impact on SKS Measurements. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018978.	3.4	4
62	Deep structure of the crust in the area of the 2016–2017 Central Italy seismic sequence from receiver function analysis. Tectonophysics, 2022, 826, 229237.	2.2	4
63	High Frequency Receiver Functions in the Dublin Basin: Application to a Potential Geothermal Site. Energy Procedia, 2014, 59, 221-226.	1.8	3
64	Exploration of Data Space Through Transâ€Dimensional Sampling: A Case Study of 4D Seismics. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022343.	3.4	3
65	Changepoint detection in seismic double-difference data: application of a trans-dimensional algorithm to data-space exploration. Solid Earth, 2021, 12, 2717-2733.	2.8	3
66	Assessing the potential of passive seismic receiver functions for ore body exploration. Geophysical Prospecting, 2020, 68, 2094-2103.	1.9	1
67	Trans-dimensional Monte Carlo sampling applied to the magnetotelluric inverse problem. Journal of Physics: Conference Series, 2015, 574, 012132.	0.4	0