Warren B Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lidar Remote Sensing for Ecosystem Studies. BioScience, 2002, 52, 19.	4.9	1,330
2	Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms. Remote Sensing of Environment, 2010, 114, 2897-2910.	11.0	1,229
3	Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 2012, 122, 2-10.	11.0	876
4	Free Access to Landsat Imagery. Science, 2008, 320, 1011-1011.	12.6	727
5	Landsat's Role in Ecological Applications of Remote Sensing. BioScience, 2004, 54, 535.	4.9	632
6	Current status of Landsat program, science, and applications. Remote Sensing of Environment, 2019, 225, 127-147.	11.0	586
7	Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing of Environment, 2006, 102, 282-292.	11.0	540
8	Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three Temperate Zone Sites. Remote Sensing of Environment, 1999, 70, 52-68.	11.0	520
9	The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 2016, 185, 271-283.	11.0	505
10	Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	491
11	Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, 2008, 112, 955-969.	11.0	449
12	Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync — Tools for calibration and validation. Remote Sensing of Environment, 2010, 114, 2911-2924.	11.0	428
13	Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 2005, 97, 301-310.	11.0	414
14	Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 2010, 114, 1053-1068.	11.0	412
15	Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon. Remote Sensing of Environment, 1999, 67, 298-308.	11.0	398
16	Lidar remote sensing of above-ground biomass in three biomes. Global Ecology and Biogeography, 2002, 11, 393-399.	5.8	393
17	North American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Environment, 2008, 112, 2914-2926.	11.0	380
18	Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment, 2007, 110, 370-386.	11.0	359

#	Article	IF	CITATIONS
19	An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment, 2003, 84, 561-571.	11.0	354
20	Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sensing, 2018, 10, 691.	4.0	306
21	Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment, 2006, 103, 16-26.	11.0	301
22	Estimating structural attributes of Douglas-fir/western hemlock forest stands from landsat and SPOT imagery. Remote Sensing of Environment, 1992, 41, 1-17.	11.0	296
23	Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment, 2009, 113, 1382-1396.	11.0	291
24	Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biology, 2005, 11, 666-684.	9.5	286
25	Bringing an ecological view of change to Landsatâ€based remote sensing. Frontiers in Ecology and the Environment, 2014, 12, 339-346.	4.0	285
26	Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sensing of Environment, 2002, 82, 397-416.	11.0	278
27	Coordinating Methodologies for Scaling Landcover Classifications from Site-Specific to Global. Remote Sensing of Environment, 1999, 70, 16-28.	11.0	276
28	Semivariograms of digital imagery for analysis of conifer canopy structure. Remote Sensing of Environment, 1990, 34, 167-178.	11.0	252
29	Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors. Remote Sensing of Environment, 2001, 78, 194-203.	11.0	236
30	Ecological Causes and Consequences of Demographic Change in the New West. BioScience, 2002, 52, 151.	4.9	222
31	Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sensing of Environment, 2012, 122, 117-133.	11.0	219
32	Forest disturbance across the conterminous United States from 1985–2012: The emerging dominance of forest decline. Forest Ecology and Management, 2016, 360, 242-252.	3.2	212
33	Modeling Percent Tree Canopy Cover. Photogrammetric Engineering and Remote Sensing, 2012, 78, 715-727.	0.6	210
34	Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products. Remote Sensing of Environment, 2003, 88, 233-255.	11.0	208
35	Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sensing of Environment, 2012, 122, 146-165.	11.0	201
36	Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment, 2018, 204, 717-728.	11.0	193

#	Article	IF	CITATIONS
37	Characterizing 23 Years (1972-95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery. Ecosystems, 2002, 5, 122-137.	3.4	192
38	A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sensing of Environment, 2011, 115, 3707-3718.	11.0	189
39	Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 2004, 91, 508-520.	11.0	188
40	Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data. Remote Sensing of Environment, 2001, 76, 139-155.	11.0	176
41	Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sensing of Environment, 2014, 151, 124-137.	11.0	169
42	Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Applied Energy, 2010, 87, 2551-2560.	10.1	165
43	A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sensing of Environment, 2018, 205, 131-140.	11.0	164
44	Continuous monitoring of land disturbance based on Landsat time series. Remote Sensing of Environment, 2020, 238, 111116.	11.0	142
45	United States Forest Disturbance Trends Observed Using Landsat Time Series. Ecosystems, 2013, 16, 1087-1104.	3.4	130
46	How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms?. Forests, 2017, 8, 98.	2.1	129
47	Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest. Remote Sensing of Environment, 2012, 124, 730-741.	11.0	125
48	Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sensing of Environment, 2005, 95, 532-548.	11.0	118
49	Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data. Remote Sensing of Environment, 2007, 106, 1-16.	11.0	112
50	Two Decades of Carbon Flux from Forests of the Pacific Northwest. BioScience, 1996, 46, 836-844.	4.9	110
51	Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sensing of Environment, 2009, 113, 2499-2510.	11.0	108
52	Using remotely sensed data to construct and assess forest attribute maps and related spatial products. Scandinavian Journal of Forest Research, 2010, 25, 340-367.	1.4	108
53	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
54	Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data. Remote Sensing of Environment, 2006, 101, 115-126.	11.0	107

#	Article	IF	CITATIONS
55	Forest Disturbance and North American Carbon Flux. Eos, 2008, 89, 105-106.	0.1	106
56	Effects of spatial variability in light use efficiency on satellite-based NPP monitoring. Remote Sensing of Environment, 2002, 80, 397-405.	11.0	103
57	Patterns of forest regrowth following clearcutting in western Oregon as determined from a Landsat time-series. Forest Ecology and Management, 2007, 243, 259-273.	3.2	95
58	Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sensing of Environment, 2013, 139, 277-290.	11.0	94
59	Map Misclassification Can Cause Large Errors in Landscape Pattern Indices: Examples from Habitat Fragmentation. Ecosystems, 2006, 9, 474-488.	3.4	93
60	Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sensing of Environment, 2005, 96, 49-61.	11.0	86
61	Key issues in making and using satellite-based maps in ecology: A primer. Forest Ecology and Management, 2006, 222, 167-181.	3.2	82
62	Patterns of covariance between forest stand and canopy structure in the Pacific Northwest. Remote Sensing of Environment, 2005, 95, 517-531.	11.0	81
63	Temporal versus spatial variation in leaf reflectance under changing water stress conditions. International Journal of Remote Sensing, 1991, 12, 1865-1876.	2.9	75
64	Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sensing of Environment, 2011, 115, 3539-3553.	11.0	75
65	LAND USE AND LAND COVER CHANGE IN THE GREATER YELLOWSTONE ECOSYSTEM: 1975–1995. , 2003, 13, 687-703.		70
66	Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecological Modelling, 2012, 226, 22-35.	2.5	70
67	A forest vulnerability index based on drought and high temperatures. Remote Sensing of Environment, 2016, 173, 314-325.	11.0	68
68	Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems. Remote Sensing of Environment, 2015, 169, 128-138.	11.0	66
69	Detecting landscape changes in the interior of British Columbia from 1975 to 1992 using satellite imagery. Canadian Journal of Forest Research, 1998, 28, 23-36.	1.7	64
70	Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA from 1972 to 2012. Wetlands Ecology and Management, 2016, 24, 73-92.	1.5	64
71	Title is missing!. Landscape Ecology, 2000, 15, 441-452.	4.2	62
72	Empirical methods to compensate for a view-angle-dependent brightness gradient in AVIRIS imagery. Remote Sensing of Environment, 1997, 62, 277-291.	11.0	60

#	Article	IF	CITATIONS
73	Predicting temperate conifer forest successional stage distributions with multitemporal Landsat Thematic Mapper imagery. Remote Sensing of Environment, 2007, 106, 228-237.	11.0	60
74	The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals. Forest Ecology and Management, 2017, 390, 173-186.	3.2	60
75	The Relative Impact of Harvest and Fire upon Landscape-Level Dynamics of Older Forests: Lessons from the Northwest Forest Plan. Ecosystems, 2008, 11, 1106-1119.	3.4	55
76	Individual snag detection using neighborhood attribute filtered airborne lidar data. Remote Sensing of Environment, 2015, 163, 165-179.	11.0	55
77	Testing a Landsat-based approach for mapping disturbance causality in U.S. forests. Remote Sensing of Environment, 2017, 195, 230-243.	11.0	53
78	Relationship between LiDAR-derived forest canopy height and Landsat images. International Journal of Remote Sensing, 2010, 31, 1261-1280.	2.9	52
79	Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data. Remote Sensing of Environment, 2014, 154, 61-73.	11.0	50
80	An empirical, integrated forest biomass monitoring system. Environmental Research Letters, 2018, 13, 025004.	5.2	50
81	Ecological importance of intermediate windstorms rivals large, infrequent disturbances in the northern Great Lakes. Ecosphere, 2011, 2, art2.	2.2	49
82	Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. Remote Sensing of Environment, 2020, 238, 111261.	11.0	48
83	Haiti's biodiversity threatened by nearly complete loss of primary forest. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11850-11855.	7.1	46
84	Estimating proportional change in forest cover as a continuous variable from multi-year MODIS data. Remote Sensing of Environment, 2008, 112, 735-749.	11.0	43
85	Decadal trends in net ecosystem production and net ecosystem carbon balance for a regional socioecological system. Forest Ecology and Management, 2011, 262, 1318-1325.	3.2	41
86	Multiscale Assessment of Binary and Continuous Landcover Variables for MODIS Validation, Mapping, and Modeling Applications. Remote Sensing of Environment, 1999, 70, 82-98.	11.0	40
87	Recent History of Large-Scale Ecosystem Disturbances in North America Derived from the AVHRR Satellite Record. Ecosystems, 2005, 8, 808-824.	3.4	40
88	Mapping change of older forest with nearest-neighbor imputation and Landsat time-series. Forest Ecology and Management, 2012, 272, 13-25.	3.2	40
89	Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region. Journal of Geophysical Research, 2006, 111, .	3.3	38
90	Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA. Remote Sensing, 2017, 9, 598.	4.0	37

#	Article	IF	CITATIONS
91	Selection of Remotely Sensed Data. , 2003, , 13-46.		36
92	Carbon Stores, Sinks, and Sources in Forests of Northwestern Russia: Can We Reconcile Forest Inventories with Remote Sensing Results?. Climatic Change, 2004, 67, 257-272.	3.6	36
93	Mapping post-fire habitat characteristics through the fusion of remote sensing tools. Remote Sensing of Environment, 2016, 173, 294-303.	11.0	36
94	Using Landsat Time-Series and LiDAR to Inform Aboveground Forest Biomass Baselines in Northern Minnesota, USA. Canadian Journal of Remote Sensing, 2017, 43, 28-47.	2.4	36
95	Three Decades of Land Cover Change in East Africa. Land, 2021, 10, 150.	2.9	35
96	Diversity of Algorithm and Spectral Band Inputs Improves Landsat Monitoring of Forest Disturbance. Remote Sensing, 2020, 12, 1673.	4.0	34
97	Modeling early forest succession following clear-cutting in western Oregon. Canadian Journal of Forest Research, 2005, 35, 1889-1900.	1.7	33
98	Detecting Trends in Landuse and Landcover Change of Nech Sar National Park, Ethiopia. Environmental Management, 2016, 57, 137-147.	2.7	33
99	High spatial resolution satellite observations for validation of MODIS land products: IKONOS observations acquired under the NASA Scientific Data Purchase. Remote Sensing of Environment, 2003, 88, 100-110.	11.0	31
100	Snow-covered Landsat time series stacks improve automated disturbance mapping accuracy in forested landscapes. Remote Sensing of Environment, 2011, 115, 3203-3219.	11.0	30
101	Development of Landsat-based annual US forest disturbance history maps (1986–2010) in support of the North American Carbon Program (NACP). Remote Sensing of Environment, 2018, 209, 312-326.	11.0	29
102	Satellite-based peatland mapping: Potential of the MODIS sensor. Global and Planetary Change, 2007, 56, 248-257.	3.5	26
103	Underestimating Risks to the Northern Spotted Owl in Fireâ€Prone Forests: Response to Hanson et al Conservation Biology, 2010, 24, 330-333.	4.7	25
104	Observation of Trends in Biomass Loss as a Result of Disturbance in the Conterminous U.S.: 1986–2004. Ecosystems, 2014, 17, 142-157.	3.4	24
105	Shifts in Forest Structure in Northwest Montana from 1972 to 2015 Using the Landsat Archive from Multispectral Scanner to Operational Land Imager. Forests, 2018, 9, 157.	2.1	19
106	An introduction to digital methods in remote sensing of forested ecosystems: Focus on the Pacific Northwest, USA. Environmental Management, 1996, 20, 421-435.	2.7	18
107	Assessing the Carbon Consequences of Western Juniper (Juniperus occidentalis) Encroachment Across Oregon, USA. Rangeland Ecology and Management, 2012, 65, 223-231.	2.3	18
108	Visual interpretation and time series modeling of Landsat imagery highlight drought's role in forest canopy declines. Ecosphere, 2018, 9, e02195.	2.2	18

#	Article	IF	CITATIONS
109	A Method to Efficiently Apply a Biogeochemical Model to a Landscape. Landscape Ecology, 2006, 21, 213-224.	4.2	12
110	Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sensing of Environment, 2003, 88, 256-256.	11.0	10
111	Mapping Suitable Lewis's Woodpecker Nesting Habitat in a Post-Fire Landscape. Northwest Science, 2016, 90, 421-432.	0.2	7
112	Water-stress effects on heating-related water transport in woody plants. Canadian Journal of Forest Research, 1991, 21, 199-206.	1.7	6
113	Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011. Environmental Monitoring and Assessment, 2017, 189, 170.	2.7	5
114	Integrating TimeSync Disturbance Detection and Repeat Forest Inventory to Predict Carbon Flux. Forests, 2019, 10, 984.	2.1	3
115	Reply to Wampler et al.: Deforestation and biodiversity loss should not be sugarcoated. Proceedings of the United States of America, 2019, 116, 5204-5204.	7.1	1
116	The Role of Remote Sensing in LTER Projects. , 2010, , 131-142.		1
117	Integrating Remote Sensing and Ecology. BioScience, 2004, 54, 483.	4.9	0