
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8685467/publications.pdf Version: 2024-02-01

KVIF I RIBBV

#	Article	IF	CITATIONS
1	Quantitative risk assessment of COVID-19 aerosol transmission indoors: a mechanistic stochastic web application. Environmental Technology (United Kingdom), 2023, 44, 1201-1212.	2.2	8
2	Contribution of SARS-CoV-2 RNA shedding routes to RNA loads in wastewater. Science of the Total Environment, 2022, 806, 150376.	8.0	60
3	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	8.0	153
4	Sodium hypochlorite disinfection of SARS-CoV-2 spiked in water and municipal wastewater. Science of the Total Environment, 2022, 807, 150766.	8.0	29
5	Inferring SARS-CoV-2 RNA shedding into wastewater relative to the time of infection. Epidemiology and Infection, 2022, 150, e21.	2.1	17
6	Comparison of RT-qPCR and RT-dPCR Platforms for the Trace Detection of SARS-CoV-2 RNA in Wastewater. ACS ES&T Water, 2022, 2, 1871-1880.	4.6	51
7	Impact of Disaster Research on the Development of Early Career Researchers: Lessons Learned from the Wastewater Monitoring Pandemic Response Efforts. Environmental Science & Technology, 2022, 56, 4724-4727.	10.0	1
8	Quantitative microbial risk assessment of outdoor aerosolized pathogens in cities with poor sanitation. Science of the Total Environment, 2022, 827, 154233.	8.0	8
9	Persistence of viable MS2 and Phi6 bacteriophages on carpet and dust. Indoor Air, 2022, 32, .	4.3	6
10	Wastewater-based epidemiological surveillance to monitor the prevalence of SARS-CoV-2 in developing countries with onsite sanitation facilities. Environmental Pollution, 2022, 311, 119679.	7.5	42
11	Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology. Environmental Research, 2021, 193, 110531.	7.5	72
12	SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Science of the Total Environment, 2021, 761, 144216.	8.0	218
13	Using C-Doping to Identify Photocatalytic Properties of Graphitic Carbon Nitride That Govern Antibacterial Efficacy. ACS ES&T Water, 2021, 1, 269-280.	4.6	23
14	Implications of SARS oVâ€2 on current and future operation and management of wastewater systems. Water Environment Research, 2021, 93, 502-515.	2.7	18
15	Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance. Environmental Science: Water Research and Technology, 2021, 7, 1545-1551.	2.4	34
16	Building-level wastewater surveillance using tampon swabs and RT-LAMP for rapid SARS-CoV-2 RNA detection. Environmental Science: Water Research and Technology, 2021, 8, 173-183.	2.4	31
17	Indoor Dust as a Matrix for Surveillance of COVID-19. MSystems, 2021, 6, .	3.8	35
18	Letter to the Editor regarding Mathavarajah et al. (2020) Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater. Science of the Total Environment, 2021, 773, 144855.	8.0	9

#	Article	IF	CITATIONS
19	Biogeochemistry of the Antrim Shale Natural Gas Reservoir. ACS Earth and Space Chemistry, 2021, 5, 1752-1761.	2.7	8
20	Assessing and managing SARS-CoV-2 occupational health risk to workers handling residuals and biosolids. Science of the Total Environment, 2021, 774, 145732.	8.0	17
21	Wastewater Surveillance during Mass COVID-19 Vaccination on a College Campus. Environmental Science and Technology Letters, 2021, 8, 792-798.	8.7	45
22	Within- and between-Day Variability of SARS-CoV-2 RNA in Municipal Wastewater during Periods of Varying COVID-19 Prevalence and Positivity. ACS ES&T Water, 2021, 1, 2097-2108.	4.6	45
23	SARS-CoV-2 Wastewater Surveillance for Public Health Action. Emerging Infectious Diseases, 2021, 27, 1-8.	4.3	73
24	Variability in RT-qPCR assay parameters indicates unreliable SARS-CoV-2 RNA quantification for wastewater surveillance. Water Research, 2021, 203, 117516.	11.3	68
25	Making waves: Plausible lead time for wastewater based epidemiology as an early warning system for COVID-19. Water Research, 2021, 202, 117438.	11.3	85
26	Differentiating between the possibility and probability of SARS-CoV-2 transmission associated with wastewater: empirical evidence is needed to substantiate risk. FEMS Microbes, 2021, 2, .	2.1	24
27	Viruses in the Built Environment (VIBE) meeting report. Microbiome, 2020, 8, 1.	11.1	345
28	COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology. Water Research, 2020, 186, 116296.	11.3	373
29	Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environmental Research, 2020, 191, 110092.	7.5	285
30	Frontier review on the propensity and repercussion of SARS-CoV-2 migration to aquatic environment. Journal of Hazardous Materials Letters, 2020, 1, 100001.	3.6	49
31	Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimization and quality control are crucial for generating reliable public health information. Current Opinion in Environmental Science and Health, 2020, 17, 82-93.	4.1	126
32	Persistence of SARS-CoV-2 in Water and Wastewater. Environmental Science and Technology Letters, 2020, 7, 937-942.	8.7	318
33	CrAssphage abundance and correlation with molecular viral markers in Italian wastewater. Water Research, 2020, 184, 116161.	11.3	41
34	Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. Journal of Travel Medicine, 2020, 27, .	3.0	146
35	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	23.7	195
36	Persistence of emerging viral fecal indicators in large-scale freshwater mesocosms. Water Research X, 2020, 9, 100067.	6.1	24

#	Article	IF	CITATIONS
37	Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19. Environmental Science & Technology, 2020, 54, 7754-7757.	10.0	337
38	Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Science of the Total Environment, 2020, 739, 139960.	8.0	405
39	Editorial Perspectives: will SARS-CoV-2 reset public health requirements in the water industry? Integrating lessons of the past and emerging research. Environmental Science: Water Research and Technology, 2020, 6, 1761-1764.	2.4	8
40	Bacterial community structure correlates with <i>Legionella pneumophila</i> colonization of New York City high rise building premises plumbing systems. Environmental Science: Water Research and Technology, 2020, 6, 1324-1335.	2.4	6
41	Cross-assembly phageÂand pepper mild mottle virus as viral water quality monitoring tools—potential, research gaps, and way forward. Current Opinion in Environmental Science and Health, 2020, 16, 54-61.	4.1	40
42	Comparative fate of CrAssphage with culturable and molecular fecal pollution indicators during activated sludge wastewater treatment. Environment International, 2020, 136, 105452.	10.0	52
43	SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of the Total Environment, 2020, 739, 139076.	8.0	599
44	First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment, 2020, 728, 138764.	8.0	1,393
45	Insights into microbial community structure and function from a shallow, simulated CO 2 â€leakage aquifer demonstrate microbial selection and adaptation. Environmental Microbiology Reports, 2019, 11, 338-351.	2.4	14
46	The Effects of Sample Storage Conditions on the Microbial Community Composition in Hydraulic Fracturing Produced Water. Geomicrobiology Journal, 2019, 36, 630-638.	2.0	10
47	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	13.3	184
48	Quantitative Microbial Risk Assessment of Swimming in Sewage Impacted Waters Using CrAssphage and Pepper Mild Mottle Virus in a Customizable Model. Environmental Science and Technology Letters, 2019, 6, 571-577.	8.7	41
49	Characterization and biological removal of organic compounds from hydraulic fracturing produced water. Environmental Sciences: Processes and Impacts, 2019, 21, 279-290.	3.5	24
50	Upregulation of peroxide scavenging enzymes and multidrug efflux proteins highlight an active sodium hypochlorite response in <i>Pseudomonas fluorescens</i> biofilms. Biofouling, 2019, 35, 329-339.	2.2	7
51	Co-Occurrence of crAssphage with Antibiotic Resistance Genes in an Impacted Urban Watershed. Environmental Science and Technology Letters, 2019, 6, 216-221.	8.7	46
52	Glutaraldehyde inhibits biological treatment of organic additives in hydraulic fracturing produced water. Science of the Total Environment, 2019, 666, 1161-1168.	8.0	16
53	Metagenomics and the development of viral water quality tools. Npj Clean Water, 2019, 2, .	8.0	51
54	Seasonal dynamics of DNA and RNA viral bioaerosol communities in a daycare center. Microbiome, 2019, 7, 53.	11.1	30

#	Article	IF	CITATIONS
55	Critical issues in application of molecular methods to environmental virology. Journal of Virological Methods, 2019, 266, 11-24.	2.1	35
56	Microbial communities in Bakken region produced water. FEMS Microbiology Letters, 2018, 365, .	1.8	27
57	Intestinal epithelial Toll-like receptor 4 prevents metabolic syndrome by regulating interactions between microbes and intestinal epithelial cells in mice. Mucosal Immunology, 2018, 11, 727-740.	6.0	34
58	Environmental sources of community-acquired legionnaires' disease: A review. International Journal of Hygiene and Environmental Health, 2018, 221, 764-774.	4.3	48
59	Correlation of crAssphage qPCR Markers with Culturable and Molecular Indicators of Human Fecal Pollution in an Impacted Urban Watershed. Environmental Science & Technology, 2018, 52, 7505-7512.	10.0	79
60	Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run. Applied and Environmental Microbiology, 2017, 83, .	3.1	20
61	Research Needs for Wastewater Handling in Virus Outbreak Response. Environmental Science & Technology, 2017, 51, 2534-2535.	10.0	12
62	Predominance and Metabolic Potential of Halanaerobium spp. in Produced Water from Hydraulically Fractured Marcellus Shale Wells. Applied and Environmental Microbiology, 2017, 83, .	3.1	64
63	Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water. Water Research, 2017, 120, 265-271.	11.3	48
64	Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure. Environmental Science & Technology, 2017, 51, 7648-7657.	10.0	35
65	Communicating the promise, risks, and ethics of large-scale, open space microbiome and metagenome research. Microbiome, 2017, 5, 132.	11.1	26
66	Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement. Environmental Science & Technology, 2017, 51, 9146-9154.	10.0	236
67	Bioreactors for low-pH iron(<scp>ii</scp>) oxidation remove considerable amounts of total iron. RSC Advances, 2017, 7, 35962-35972.	3.6	25
68	Evaluation of Phi6 Persistence and Suitability as an Enveloped Virus Surrogate. Environmental Science & Technology, 2017, 51, 8692-8700.	10.0	157
69	Disinfection of Ebola Virus in Sterilized Municipal Wastewater. PLoS Neglected Tropical Diseases, 2017, 11, e0005299.	3.0	20
70	Draft Genome Sequence of <i>Pseudomonas</i> sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome. Genome Announcements, 2017, 5, .	0.8	3
71	Risks from <i>Ebolavirus</i> Discharge from Hospitals to Sewer Workers. Water Environment Research, 2017, 89, 357-368.	2.7	25
72	Seasonal Dynamics of the Airborne Bacterial Community and Selected Viruses in a Children's Daycare Center. PLoS ONE, 2016, 11, e0151004.	2.5	46

#	Article	IF	CITATIONS
73	Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome. Journal of Immunology, 2016, 197, 97-107.	0.8	108
74	Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities. Applied and Environmental Microbiology, 2016, 82, 3611-3621.	3.1	46
75	Draft Genome Sequence of Methanohalophilus mahii Strain DAL1 Reconstructed from a Hydraulic Fracturing-Produced Water Metagenome. Genome Announcements, 2016, 4, .	0.8	4
76	Ten questions concerning the microbiomes of buildings. Building and Environment, 2016, 109, 224-234.	6.9	143
77	Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale. Microbial Ecology, 2016, 72, 571-581.	2.8	41
78	Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation. Immunity, 2016, 44, 659-671.	14.3	256
79	Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived. Environmental Science & Technology, 2016, 50, 2641-2651.	10.0	63
80	Response to Comment on "Ebola Virus Persistence in the Environment: State of the Knowledge and Research Needs― Environmental Science and Technology Letters, 2015, 2, 50-51.	8.7	3
81	Fungal diversity and presence of potentially pathogenic fungi in a hospital hot water system treated with on-site monochloramine. Water Research, 2015, 71, 197-206.	11.3	35
82	Microbial Mats as a Biological Treatment Approach for Saline Wastewaters: The Case of Produced Water from Hydraulic Fracturing. Environmental Science & Technology, 2015, 49, 6172-6180.	10.0	54
83	Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2015, 59, 3433-3440.	3.2	64
84	Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicology and Applied Pharmacology, 2015, 289, 397-408.	2.8	89
85	From commensalism to mutualism: integrating the microbial ecology, building science, and indoor air communities to advance research on the indoor microbiome. Indoor Air, 2015, 25, 1-3.	4.3	7
86	Persistence of Ebola Virus in Sterilized Wastewater. Environmental Science and Technology Letters, 2015, 2, 245-249.	8.7	71
87	Ebola Virus Persistence in the Environment: State of the Knowledge and Research Needs. Environmental Science and Technology Letters, 2015, 2, 2-6.	8.7	58
88	The Functional Potential of Microbial Communities in Hydraulic Fracturing Source Water and Produced Water from Natural Gas Extraction Characterized by Metagenomic Sequencing. PLoS ONE, 2014, 9, e107682.	2.5	51
89	Identification accuracy and diversity reproducibility associated with internal transcribed spacerâ€based fungal taxonomic library preparation. Environmental Microbiology, 2014, 16, 2764-2776.	3.8	14
90	Challenges of studying viral aerosol metagenomics and communities in comparison with bacterial and fungal aerosols. FEMS Microbiology Letters, 2014, 357, 1-9.	1.8	51

#	Article	IF	CITATIONS
91	Fungal Highâ€throughput Taxonomic Identification tool for use with Nextâ€Generation Sequencing (FHiTINGS). Journal of Basic Microbiology, 2014, 54, 315-321.	3.3	60
92	Improved Bacteriophage Genome Data is Necessary for Integrating Viral and Bacterial Ecology. Microbial Ecology, 2014, 67, 242-244.	2.8	23
93	Produced Water Exposure Alters Bacterial Response to Biocides. Environmental Science & Technology, 2014, 48, 13001-13009.	10.0	68
94	Clustering of fungal community internal transcribed spacer sequence data obscures taxonomic diversity. Environmental Microbiology, 2014, 16, 2491-2500.	3.8	24
95	Thermodynamic Controls on the Kinetics of Microbial Low-pH Fe(II) Oxidation. Environmental Science & Technology, 2014, 48, 9246-9254.	10.0	22
96	<i>Lactobacillus rhamnosus</i> HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets: evidence in mice for a role of TLR9. American Journal of Physiology - Renal Physiology, 2014, 306, G1021-G1032.	3.4	103
97	Metagenomic Evaluation of the Highly Abundant Human Gut Bacteriophage CrAssphage for Source Tracking of Human Fecal Pollution. Environmental Science and Technology Letters, 2014, 1, 405-409.	8.7	80
98	Shift in the Microbial Ecology of a Hospital Hot Water System following the Introduction of an On-Site Monochloramine Disinfection System. PLoS ONE, 2014, 9, e102679.	2.5	62
99	Identification of Viral Pathogen Diversity in Sewage Sludge by Metagenome Analysis. Environmental Science & Technology, 2013, 47, 1945-1951.	10.0	301
100	Prevalence of respiratory adenovirus species B and C in sewage sludge. Environmental Sciences: Processes and Impacts, 2013, 15, 336-338.	3.5	23
101	Metagenomic identification of viral pathogens. Trends in Biotechnology, 2013, 31, 275-279.	9.3	69
102	Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population. Bioresource Technology, 2013, 129, 281-288.	9.6	77
103	Suggested Reporting Parameters for Investigations of Wastewater from Unconventional Shale Gas Extraction. Environmental Science & amp; Technology, 2013, 47, 13220-13221.	10.0	24
104	Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction. Environmental Science & Technology, 2013, 47, 13141-13150.	10.0	149
105	Convergent development of anodic bacterial communities in microbial fuel cells. ISME Journal, 2012, 6, 2002-2013.	9.8	190
106	Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME Journal, 2012, 6, 1801-1811.	9.8	211
107	Application of enteric viruses for fecal pollution source tracking in environmental waters. Environment International, 2012, 45, 151-164.	10.0	105
108	Human Occupancy as a Source of Indoor Airborne Bacteria. PLoS ONE, 2012, 7, e34867.	2.5	404

#	Article	IF	CITATIONS
109	Toward a Consensus View on the Infectious Risks Associated with Land Application of Sewage Sludge. Environmental Science & Technology, 2011, 45, 5459-5469.	10.0	100
110	Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Letters in Applied Microbiology, 2011, 52, 386-392.	2.2	90
111	New Directions: A revolution in DNA sequencing now allows for the meaningful integration of biology with aerosol science. Atmospheric Environment, 2011, 45, 1896-1897.	4.1	36
112	Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 2011, 12, 148.	2.8	258
113	Nitrogen Removal from Wastewater Using a Hybrid Membraneâ€Biofilm Process: Pilotâ€5cale Studies. Water Environment Research, 2010, 82, 195-201.	2.7	16
114	Next-Generation DNA Sequencing Identifies Pathogens in Biosolids. Proceedings of the Water Environment Federation, 2010, 2010, 5606-5613.	0.0	0
115	Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Research, 2010, 44, 4252-4260.	11.3	137
116	The Hybrid Membrane Biofilm Process for TN Removal from Wastewater: Bench and Pilot Scale Studies. , 2008, , .		0