JoaquÃ-n Pérez-Schindler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8685099/publications.pdf

Version: 2024-02-01

949033 1051228 17 515 11 16 g-index citations h-index papers 19 19 19 1147 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RNA-bound PGC- $11\pm$ controls gene expression in liquid-like nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
2	Physiological Regulation of Skeletal Muscle Mass. , 2019, , 139-150.		1
3	Exercise and high-fat feeding remodel transcript-metabolite interactive networks in mouse skeletal muscle. Scientific Reports, 2017, 7, 13485.	1.6	16
4	Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3. American Journal of Physiology - Cell Physiology, 2017, 313, C257-C261.	2.1	8
5	Regulation of skeletal muscle mitochondrial function by nuclear receptors: implications for health and disease. Clinical Science, 2015, 129, 589-599.	1.8	26
6	Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise. Journal of Physiology, 2015, 593, 4275-4284.	1.3	54
7	PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates î² ₂ adrenoceptor-mediated effects. Experimental Biology and Medicine, 2015, 240, 1205-1213.	1.1	8
8	Single inhibition of either PDE3 or PDE4 unmasks \hat{l}^2 2-adrenoceptor-mediated inotropic and lusitropic effects in the left but not right ventricular myocardium of rat. European Journal of Pharmacology, 2015, 765, 429-436.	1.7	8
9	Nutritional strategies to support concurrent training. European Journal of Sport Science, 2015, 15, 41-52.	1.4	45
10	Understanding the acetylome: translating targeted proteomics into meaningful physiology. American Journal of Physiology - Cell Physiology, 2014, 307, C763-C773.	2.1	36
11	The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβĴδ in sedentary mice fed a regular chow diet. Diabetologia, 2014, 57, 2405-2412.	2.9	17
12	The transcriptional coactivator PGC- $1\hat{l}\pm$ is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20314-20319.	3.3	48
13	Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8738-8743.	3.3	122
14	Pathophysiological relevance of the cardiac \hat{l}^2 2-adrenergic receptor and its potential as a therapeutic target to improve cardiac function. European Journal of Pharmacology, 2013, 698, 39-47.	1.7	20
15	New insights in the regulation of skeletal muscle PGC- \hat{l} ± by exercise and metabolic diseases. Drug Discovery Today: Disease Models, 2013, 10, e79-e85.	1.2	6
16	The Corepressor NCoR1 Antagonizes PGC-1 <i>\hat{l}±</i> and Estrogen-Related Receptor <i>\hat{l}±</i> in the Regulation of Skeletal Muscle Function and Oxidative Metabolism. Molecular and Cellular Biology, 2012, 32, 4913-4924.	1.1	74
17	Regulation of contractility and metabolic signaling by the \hat{l}^2 2-adrenergic receptor in rat ventricular muscle. Life Sciences, 2011, 88, 892-897.	2.0	16