Kazunori Nagao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8684924/publications.pdf

Version: 2024-02-01

51	2,797	26	51
papers	citations	h-index	g-index
65	65	65	1863 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Molecular Field Analysis Using Computational-Screening Data in Asymmetric $\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbene-Copper Catalysis toward Data-Driven $\langle i \rangle$ In Silico $\langle i \rangle$ Catalyst Optimization. Bulletin of the Chemical Society of Japan, 2022, 95, 271-277.	3.2	7
2	Reductive Crossâ€Coupling between Arylaldehydes and (Hetero)aryl Electrophiles Using Silylboronate Reductant. European Journal of Organic Chemistry, 2022, 2022, .	2.4	0
3	A Triple Photoredox/Cobalt/Brà nsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes. Journal of the American Chemical Society, 2022, 144, 7953-7959.	13.7	43
4	Organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover. Nature Communications, 2022, 13, 2684.	12.8	18
5	(Invited, Digital Presentation) Carbocation Generation By Organophotoredox Catalyzed Radical-Polar Crossover. ECS Meeting Abstracts, 2022, MA2022-01, 913-913.	0.0	O
6	Organophotoredox-Catalyzed Three-Component Coupling of Heteroatom Nucleophiles, Alkenes, and Aliphatic Redox Active Esters. Organic Letters, 2021, 23, 1798-1803.	4.6	43
7	Catalytic Reductive Crossâ€Coupling between Aromatic Aldehydes and Arylnitriles. Chemistry - A European Journal, 2021, 27, 7094-7098.	3.3	5
8	Synthesis of Sterically Hindered α-Hydroxycarbonyls through Radical–Radical Coupling. Organic Letters, 2021, 23, 4420-4425.	4.6	21
9	Fluorescent-Oxaboroles: Synthesis and Optical Property by Sugar Recognition. Chemical and Pharmaceutical Bulletin, 2021, 69, 526-528.	1.3	2
10	Decarboxylative N-Alkylation of Azoles through Visible-Light-Mediated Organophotoredox Catalysis. Organic Letters, 2021, 23, 5415-5419.	4.6	37
11	Aryl radical-mediated N-heterocyclic carbene catalysis. Nature Communications, 2021, 12, 3848.	12.8	104
12	Organophotoredoxâ€Catalyzed Decarboxylative Nâ€Alkylation of Sulfonamides. ChemCatChem, 2021, 13, 3930-3933.	3.7	13
13	Radical N-heterocyclic carbene catalysis for \hat{l}^2 -ketocarbonyl synthesis. Tetrahedron, 2021, 91, 132212.	1.9	28
14	Radical Relay Trichloromethylacylation of Alkenes through N-Heterocyclic Carbene Catalysis. Organic Letters, 2021, 23, 7242-7247.	4.6	53
15	Carbocation Generation by Organophotoredox Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 1005-1012.	0.1	1
16	Copper-Catalyzed Enantioselective Reductive Cross-Coupling of Aldehydes and Imines. Organic Letters, 2020, 22, 800-803.	4.6	17
17	Organophotoredox-Catalyzed Decarboxylative C(sp ³)–O Bond Formation. Journal of the American Chemical Society, 2020, 142, 1211-1216.	13.7	106
18	Direct Synthesis of Dialkyl Ketones from Aliphatic Aldehydes through Radical <i>N</i> Heterocyclic Carbene Catalysis. ACS Catalysis, 2020, 10, 8524-8529.	11.2	96

#	Article	IF	CITATIONS
19	Transitionâ€Metalâ€Free Crossâ€Coupling by Using Tertiary Benzylic Organoboronates. Angewandte Chemie - International Edition, 2020, 59, 22460-22464.	13.8	24
20	Transitionâ€Metalâ€Free Crossâ€Coupling by Using Tertiary Benzylic Organoboronates. Angewandte Chemie, 2020, 132, 22646-22650.	2.0	5
21	Static to inducibly dynamic stereocontrol: The convergent use of racemic \hat{l}^2 -substituted ketones. Science, 2020, 369, 1113-1118.	12.6	79
22	Recent advances in N-heterocyclic carbene-based radical catalysis. Chemical Science, 2020, 11, 5630-5636.	7.4	224
23	Tertiary Alkylations of Aldehydes, Ketones or Imines Using Benzylic Organoboronates and a Base Catalyst. Bulletin of the Chemical Society of Japan, 2020, 93, 1065-1069.	3.2	4
24	Reductive umpolung for asymmetric synthesis of chiral \hat{l} ±-allenic alcohols. Chemical Communications, 2020, 56, 7471-7474.	4.1	13
25	Allylic cross-coupling using aromatic aldehydes as α-alkoxyalkyl anions. Beilstein Journal of Organic Chemistry, 2020, 16, 185-189.	2.2	9
26	N-Heterocyclic Carbene-Catalyzed Radical Relay Enabling Synthesis of Î-Ketocarbonyls. Organic Letters, 2020, 22, 3922-3925.	4.6	79
27	Aliphatic Oxaboroles Enabling Remarkable Recognition of Diols. Bulletin of the Chemical Society of Japan, 2020, 93, 576-580.	3.2	5
28	$\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbene-Catalyzed Radical Relay Enabling Vicinal Alkylacylation of Alkenes. Journal of the American Chemical Society, 2019, 141, 14073-14077.	13.7	198
29	Synergistic Nâ€Heterocyclic Carbene/Palladiumâ€Catalyzed Aldehyde Acylation of Allylic Amines. Asian Journal of Organic Chemistry, 2019, 8, 1133-1135.	2.7	22
30	$$ $$ $$ $$ $$ $$ $$ $$ $$	13.7	226
31	N-Heterocyclic Carbene (NHC)/Metal Cooperative Catalysis. Topics in Current Chemistry, 2019, 377, 35.	5.8	44
32	Dehydrative Allylation between Aldehydes and Allylic Alcohols through Synergistic Nâ€Heterocyclic Carbene/Palladium Catalysis. Chemistry - A European Journal, 2019, 25, 660-660.	3.3	2
33	Asymmetric Catalysis Using Aromatic Aldehydes as Chiral α-Alkoxyalkyl Anions. Journal of the American Chemical Society, 2019, 141, 113-117.	13.7	60
34	Reductive Coupling between Aromatic Aldehydes and Ketones or Imines by Copper Catalysis. Journal of the American Chemical Society, 2019, 141, 3664-3669.	13.7	37
35	Dehydrative Allylation between Aldehydes and Allylic Alcohols through Synergistic Nâ€Heterocyclic Carbene/Palladium Catalysis. Chemistry - A European Journal, 2019, 25, 724-727.	3.3	48
36	Phosphine-Catalyzed <i>Anti</i> -Hydroboration of Internal Alkynes. Organic Letters, 2018, 20, 1861-1865.	4.6	73

3

#	Article	IF	CITATIONS
37	Phosphineâ€Catalyzed <i>anti</i> â€Carboboration of Alkynoates with 9â€BBNâ€Based 1,1â€Diborylalkanes: Synthesis and Use of Multisubstituted γâ€Borylallylboranes. Angewandte Chemie - International Edition, 2018, 57, 3196-3199.	13.8	42
38	Phosphineâ€Catalyzed <i>anti</i> â€Carboboration of Alkynoates with 9â€BBNâ€Based 1,1â€Diborylalkanes: Synthesis and Use of Multisubstituted γâ€Borylallylboranes. Angewandte Chemie, 2018, 130, 3250-3253.	2.0	15
39	Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science, 2017, 358, 1182-1187.	12.6	394
40	Copper-Catalyzed Semihydrogenation of Internal Alkynes with Molecular Hydrogen. Organometallics, 2016, 35, 1354-1357.	2.3	60
41	Phosphine-Catalyzed Vicinal Acylcyanation of Alkynoates. Organic Letters, 2016, 18, 1706-1709.	4.6	26
42	Synthesis of 1,1â€Diborylalkenes through a BrÃ,nsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron. Angewandte Chemie - International Edition, 2015, 54, 15859-15862.	13.8	85
43	Copperâ€Catalyzed γâ€Selective and Stereospecific Allylic Crossâ€Coupling with Secondary Alkylboranes. Chemistry - A European Journal, 2015, 21, 9666-9670.	3.3	15
44	Copper-catalyzed stereoselective conjugate addition of alkylboranes to alkynoates. Beilstein Journal of Organic Chemistry, 2015, 11, 2444-2450.	2.2	9
45	<i>Anti</i> -Selective Vicinal Silaboration and Diboration of Alkynoates through Phosphine Organocatalysis. Organic Letters, 2015, 17, 1304-1307.	4.6	124
46	Copper-catalyzed enantioselective allylic cross-coupling with alkylboranes. Tetrahedron, 2015, 71, 6519-6533.	1.9	14
47	Copper(I)-Catalyzed Intramolecular Hydroalkoxylation of Unactivated Alkenes. Organic Letters, 2015, 17, 2039-2041.	4.6	51
48	Phosphine-Catalyzed <i>Anti</i> Carboboration of Alkynoates with Alkyl-, Alkenyl-, and Arylboranes. Journal of the American Chemical Society, 2014, 136, 10605-10608.	13.7	83
49	Synthesis of Trisubstituted Alkenylstannanes through Copperâ€Catalyzed Threeâ€Component Coupling of Alkylboranes, Alkynoates, and Tributyltin Methoxide. Angewandte Chemie - International Edition, 2013, 52, 11620-11623.	13.8	22
50	Functional Group Tolerable Synthesis of Allylsilanes through Copper-Catalyzed Î ³ -Selective Allyl-Alkyl Coupling between Allylic Phosphates and Alkylboranes. Synthesis, 2012, 44, 1535-1541.	2.3	15
51	Reversible 1,3-anti/syn-Stereochemical Courses in Copper-Catalyzed γ-Selective Allyl–Alkyl Coupling between Chiral Allylic Phosphates and Alkylboranes. Journal of the American Chemical Society, 2012, 134, 8982-8987.	13.7	68