Kazunori Nagao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8684924/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science, 2017, 358, 1182-1187.	12.6	394
2	<i>N</i> -Heterocyclic Carbene-Catalyzed Decarboxylative Alkylation of Aldehydes. Journal of the American Chemical Society, 2019, 141, 3854-3858.	13.7	226
3	Recent advances in N-heterocyclic carbene-based radical catalysis. Chemical Science, 2020, 11, 5630-5636.	7.4	224
4	<i>N</i> -Heterocyclic Carbene-Catalyzed Radical Relay Enabling Vicinal Alkylacylation of Alkenes. Journal of the American Chemical Society, 2019, 141, 14073-14077.	13.7	198
5	<i>Anti</i> -Selective Vicinal Silaboration and Diboration of Alkynoates through Phosphine Organocatalysis. Organic Letters, 2015, 17, 1304-1307.	4.6	124
6	Organophotoredox-Catalyzed Decarboxylative C(sp ³)–O Bond Formation. Journal of the American Chemical Society, 2020, 142, 1211-1216.	13.7	106
7	Aryl radical-mediated N-heterocyclic carbene catalysis. Nature Communications, 2021, 12, 3848.	12.8	104
8	Direct Synthesis of Dialkyl Ketones from Aliphatic Aldehydes through Radical <i>N</i> -Heterocyclic Carbene Catalysis. ACS Catalysis, 2020, 10, 8524-8529.	11.2	96
9	Synthesis of 1,1â€Diborylalkenes through a BrÃ,nsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron. Angewandte Chemie - International Edition, 2015, 54, 15859-15862.	13.8	85
10	Phosphine-Catalyzed <i>Anti</i> -Carboboration of Alkynoates with Alkyl-, Alkenyl-, and Arylboranes. Journal of the American Chemical Society, 2014, 136, 10605-10608.	13.7	83
11	Static to inducibly dynamic stereocontrol: The convergent use of racemic β-substituted ketones. Science, 2020, 369, 1113-1118.	12.6	79
12	N-Heterocyclic Carbene-Catalyzed Radical Relay Enabling Synthesis of δ-Ketocarbonyls. Organic Letters, 2020, 22, 3922-3925.	4.6	79
13	Phosphine-Catalyzed <i>Anti</i> -Hydroboration of Internal Alkynes. Organic Letters, 2018, 20, 1861-1865.	4.6	73
14	Reversible 1,3-anti/syn-Stereochemical Courses in Copper-Catalyzed γ-Selective Allyl–Alkyl Coupling between Chiral Allylic Phosphates and Alkylboranes. Journal of the American Chemical Society, 2012, 134, 8982-8987.	13.7	68
15	Copper-Catalyzed Semihydrogenation of Internal Alkynes with Molecular Hydrogen. Organometallics, 2016, 35, 1354-1357.	2.3	60
16	Asymmetric Catalysis Using Aromatic Aldehydes as Chiral α-Alkoxyalkyl Anions. Journal of the American Chemical Society, 2019, 141, 113-117.	13.7	60
17	Radical Relay Trichloromethylacylation of Alkenes through N-Heterocyclic Carbene Catalysis. Organic Letters, 2021, 23, 7242-7247.	4.6	53
18	Copper(I)-Catalyzed Intramolecular Hydroalkoxylation of Unactivated Alkenes. Organic Letters, 2015, 17, 2039-2041.	4.6	51

Kazunori Nagao

#	Article	IF	CITATIONS
19	Dehydrative Allylation between Aldehydes and Allylic Alcohols through Synergistic Nâ€Heterocyclic Carbene/Palladium Catalysis. Chemistry - A European Journal, 2019, 25, 724-727.	3.3	48
20	N-Heterocyclic Carbene (NHC)/Metal Cooperative Catalysis. Topics in Current Chemistry, 2019, 377, 35.	5.8	44
21	Organophotoredox-Catalyzed Three-Component Coupling of Heteroatom Nucleophiles, Alkenes, and Aliphatic Redox Active Esters. Organic Letters, 2021, 23, 1798-1803.	4.6	43
22	A Triple Photoredox/Cobalt/BrÃ,nsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes. Journal of the American Chemical Society, 2022, 144, 7953-7959.	13.7	43
23	Phosphineâ€Catalyzed <i>anti</i> â€Carboboration of Alkynoates with 9â€BBNâ€Based 1,1â€Diborylalkanes: Synthesis and Use of Multisubstituted γâ€Borylallylboranes. Angewandte Chemie - International Edition, 2018, 57, 3196-3199.	13.8	42
24	Reductive Coupling between Aromatic Aldehydes and Ketones or Imines by Copper Catalysis. Journal of the American Chemical Society, 2019, 141, 3664-3669.	13.7	37
25	Decarboxylative N-Alkylation of Azoles through Visible-Light-Mediated Organophotoredox Catalysis. Organic Letters, 2021, 23, 5415-5419.	4.6	37
26	Radical N-heterocyclic carbene catalysis for Î ² -ketocarbonyl synthesis. Tetrahedron, 2021, 91, 132212.	1.9	28
27	Phosphine-Catalyzed Vicinal Acylcyanation of Alkynoates. Organic Letters, 2016, 18, 1706-1709.	4.6	26
28	Transitionâ€Metalâ€Free Crossâ€Coupling by Using Tertiary Benzylic Organoboronates. Angewandte Chemie - International Edition, 2020, 59, 22460-22464.	13.8	24
29	Synthesis of Trisubstituted Alkenylstannanes through Copper atalyzed Three omponent Coupling of Alkylboranes, Alkynoates, and Tributyltin Methoxide. Angewandte Chemie - International Edition, 2013, 52, 11620-11623.	13.8	22
30	Synergistic Nâ€Heterocyclic Carbene/Palladiumâ€Catalyzed Aldehyde Acylation of Allylic Amines. Asian Journal of Organic Chemistry, 2019, 8, 1133-1135.	2.7	22
31	Synthesis of Sterically Hindered α-Hydroxycarbonyls through Radical–Radical Coupling. Organic Letters, 2021, 23, 4420-4425.	4.6	21
32	Organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover. Nature Communications, 2022, 13, 2684.	12.8	18
33	Copper-Catalyzed Enantioselective Reductive Cross-Coupling of Aldehydes and Imines. Organic Letters, 2020, 22, 800-803.	4.6	17
34	Functional Group Tolerable Synthesis of Allylsilanes through Copper-Catalyzed γ-Selective Allyl-Alkyl Coupling between Allylic Phosphates and Alkylboranes. Synthesis, 2012, 44, 1535-1541.	2.3	15
35	Copperâ€Catalyzed γâ€Selective and Stereospecific Allylic Crossâ€Coupling with Secondary Alkylboranes. Chemistry - A European Journal, 2015, 21, 9666-9670.	3.3	15
36	Phosphineâ€Catalyzed <i>anti</i> â€Carboboration of Alkynoates with 9â€BBNâ€Based 1,1â€Diborylalkanes: Synthesis and Use of Multisubstituted γâ€Borylallylboranes. Angewandte Chemie, 2018, 130, 3250-3253.	2.0	15

Kazunori Nagao

#	Article	IF	CITATIONS
37	Copper-catalyzed enantioselective allylic cross-coupling with alkylboranes. Tetrahedron, 2015, 71, 6519-6533.	1.9	14
38	Reductive umpolung for asymmetric synthesis of chiral α-allenic alcohols. Chemical Communications, 2020, 56, 7471-7474.	4.1	13
39	Organophotoredoxâ€Catalyzed Decarboxylative Nâ€Alkylation of Sulfonamides. ChemCatChem, 2021, 13, 3930-3933.	3.7	13
40	Copper-catalyzed stereoselective conjugate addition of alkylboranes to alkynoates. Beilstein Journal of Organic Chemistry, 2015, 11, 2444-2450.	2.2	9
41	Allylic cross-coupling using aromatic aldehydes as α-alkoxyalkyl anions. Beilstein Journal of Organic Chemistry, 2020, 16, 185-189.	2.2	9
42	Molecular Field Analysis Using Computational-Screening Data in Asymmetric <i>N</i> -Heterocyclic Carbene-Copper Catalysis toward Data-Driven <i>In Silico</i> Catalyst Optimization. Bulletin of the Chemical Society of Japan, 2022, 95, 271-277.	3.2	7
43	Transitionâ€Metalâ€Free Crossâ€Coupling by Using Tertiary Benzylic Organoboronates. Angewandte Chemie, 2020, 132, 22646-22650.	2.0	5
44	Catalytic Reductive Crossâ€Coupling between Aromatic Aldehydes and Arylnitriles. Chemistry - A European Journal, 2021, 27, 7094-7098.	3.3	5
45	Aliphatic Oxaboroles Enabling Remarkable Recognition of Diols. Bulletin of the Chemical Society of Japan, 2020, 93, 576-580.	3.2	5
46	Tertiary Alkylations of Aldehydes, Ketones or Imines Using Benzylic Organoboronates and a Base Catalyst. Bulletin of the Chemical Society of Japan, 2020, 93, 1065-1069.	3.2	4
47	Dehydrative Allylation between Aldehydes and Allylic Alcohols through Synergistic Nâ€Heterocyclic Carbene/Palladium Catalysis. Chemistry - A European Journal, 2019, 25, 660-660.	3.3	2
48	Fluorescent-Oxaboroles: Synthesis and Optical Property by Sugar Recognition. Chemical and Pharmaceutical Bulletin, 2021, 69, 526-528.	1.3	2
49	Carbocation Generation by Organophotoredox Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 1005-1012.	0.1	1
50	Reductive Cross oupling between Arylaldehydes and (Hetero)aryl Electrophiles Using Silylboronate Reductant. European Journal of Organic Chemistry, 2022, 2022, .	2.4	0
51	(Invited, Digital Presentation) Carbocation Generation By Organophotoredox Catalyzed Radical-Polar Crossover. ECS Meeting Abstracts, 2022, MA2022-01, 913-913.	0.0	0