Riccardo Ciolfi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8684626/publications.pdf

Version: 2024-02-01

126 papers 35,074 citations

63 h-index 127 g-index

129 all docs 129 docs citations 129 times ranked 13408 citing authors

#	Article	IF	Citations
1	Calibration of advanced Virgo and reconstruction of the detector strain $h(t)$ during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
2	Close, bright, and boxy: the superluminous SN 2018hti. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4484-4502.	4.4	5
3	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
4	Breakthrough Multi-Messenger Astrophysics with the THESEUS Space Mission. Galaxies, 2022, 10, 60.	3.0	3
5	Implementing a new recovery scheme for primitive variables in the general relativistic magnetohydrodynamic code Spritz. Physical Review D, 2022, 105, .	4.7	2
6	Turbulent magnetic field amplification in binary neutron star mergers. Physical Review D, 2022, 106, .	4.7	26
7	Robust recovery of primitive variables in relativistic ideal magnetohydrodynamics. Physical Review D, 2021, 103, .	4.7	18
8	SNÂ2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2120-2139.	4.4	16
9	Electromagnetic counterparts of compact binary mergers. Journal of Plasma Physics, 2021, 87, .	2.1	13
10	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
11	Spritz: general relativistic magnetohydrodynamics with neutrinos. Classical and Quantum Gravity, 2021, 38, 085021.	4.0	10
12	A deep study of the high–energy transient sky. Experimental Astronomy, 2021, 51, 1203-1223.	3.7	5
13	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
14	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338
15	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
16	Short gamma-ray burst jet propagation in binary neutron star merger environments. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3483-3498.	4.4	16
17	Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities. Experimental Astronomy, 2021, 52, 407-437.	3.7	8
18	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20

#	Article	IF	CITATIONS
19	Two Steps Forward and One Step Sideways: The Propagation of Relativistic Jets in Realistic Binary Neutron Star Merger Ejecta. Astrophysical Journal Letters, 2021, 918, L6.	8.3	12
20	HARM3D+NUC: A New Method for Simulating the Post-merger Phase of Binary Neutron Star Mergers with GRMHD, Tabulated EOS, and Neutrino Leakage. Astrophysical Journal, 2021, 919, 95.	4.5	17
21	Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy, 2021, 52, 245-275.	3.7	12
22	The THESEUS space mission: science goals, requirements and mission concept. Experimental Astronomy, 2021, 52, 183-218.	3.7	32
23	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
24	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
25	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
26	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
27	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext>â€%</mml:mtext><mml:mtext> â€%⊙</mml:mtext></mml:mrow><td>nml:natext:</td><td>- < n&31&msub></td></mml:math>	nml :na text:	- < n &31& msub>
28	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
29	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
30	Collimated outflows from long-lived binary neutron star merger remnants. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 495, L66-L70.	3.3	55
31	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
32	Spritz: a new fully general-relativistic magnetohydrodynamic code. Classical and Quantum Gravity, 2020, 37, 135010.	4.0	14
33	The key role of magnetic fields in binary neutron star mergers. General Relativity and Gravitation, 2020, 52, 1.	2.0	48
34	A comparison between short GRB afterglows and kilonova AT2017gfo: shedding light on kilonovae properties. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3379-3397.	4.4	52
35	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^¼Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
36	Binary Neutron Star Mergers After GW170817. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	19

#	Article	IF	CITATIONS
37	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
38	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
39	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
40	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	5.1	70
41	Intrinsic Properties of the Engine and Jet that Powered the Short Gamma-Ray Burst Associated with GW170817. Astrophysical Journal, 2020, 898, 59.	4.5	20
42	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
43	Magnetically Driven Baryon Winds from Binary Neutron Star Merger Remnants and the Blue Kilonova of 2017 August. Astrophysical Journal Letters, 2020, 900, L35.	8.3	43
44	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
45	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
46	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
47	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
48	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, $2019,100,$	4.7	54
49	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
50	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
51	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
52	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
53	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
54	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52

#	Article	IF	Citations
55	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
56	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
57	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
58	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
59	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
60	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
61	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
62	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
63	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
64	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Modeâ€" <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.	7.8	36
65	First 100Âms of a long-lived magnetized neutron star formed in a binary neutron star merger. Physical Review D, 2019, 100, .	4.7	96
66	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
67	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
68	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
69	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
70	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	50
71	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	27
72	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728

#	Article	IF	CITATIONS
73	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
74	Short gamma-ray burst central engines. International Journal of Modern Physics D, 2018, 27, 1842004.	2.1	25
75	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
76	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
77	Effects of chiral effective field theory equation of state on binary neutron star mergers. Physical Review D, 2018, 98, .	4.7	37
78	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
79	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	. 0.784314 4.0	l rgBT /Overlo
80	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
81	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
82	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	2.6	133
83	THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 2018, 62, 662-682.	2.6	56
84	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
85	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
86	Late Time Afterglow Observations Reveal a Collimated Relativistic Jet in the Ejecta of the Binary Neutron Star Merger GW170817. Physical Review Letters, 2018, 120, 241103.	7.8	241
87	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
88	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4. 5	46
89	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	27.8	715
90	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413

#	Article	IF	CITATIONS
91	Multi-messenger Observations of a Binary Neutron Star Merger < sup>* < /sup>. Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
92	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
93	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
94	Structure of stable binary neutron star merger remnants: Role of initial spin. Physical Review D, 2017, 96, .	4.7	44
95	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
96	General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star. Physical Review D, 2017, 95, .	4.7	136
97	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
98	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
99	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
100	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
101	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
102	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
103	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
104	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
105	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
106	X-RAY FLASHES POWERED BY THE SPINDOWN OF LONG-LIVED NEUTRON STARS. Astrophysical Journal, 2016, 829, 72.	4.5	9
107	Short gamma-ray bursts at the dawn of the gravitational wave era. Astronomy and Astrophysics, 2016, 594, A84.	5.1	96
108	Structure of stable binary neutron star merger remnants: A case study. Physical Review D, 2016, 94, .	4.7	79

#	Article	IF	CITATIONS
109	Binary neutron star mergers and short gamma-ray bursts: Effects of magnetic field orientation, equation of state, and mass ratio. Physical Review D, 2016, 94, .	4.7	7 5
110	General relativistic magnetohydrodynamic simulations of binary neutron star mergers with the APR4 equation of state. Classical and Quantum Gravity, 2016, 33, 164001.	4.0	68
111	ELECTROMAGNETIC EMISSION FROM LONG-LIVED BINARY NEUTRON STAR MERGER REMNANTS. I. FORMULATION OF THE PROBLEM. Astrophysical Journal, 2016, 819, 14.	4.5	71
112	ELECTROMAGNETIC EMISSION FROM LONG-LIVED BINARY NEUTRON STAR MERGER REMNANTS. II. LIGHT CURVES AND SPECTRA. Astrophysical Journal, 2016, 819, 15.	4.5	70
113	SHORT GAMMA-RAY BURSTS IN THE "TIME-REVERSAL―SCENARIO. Astrophysical Journal Letters, 2015, 798, L36.	8.3	7 5
114	Short gamma-ray bursts from binary neutron star mergers: the time-reversal scenario. , 2015, , .		2
115	Magnetic field instabiities in neutron stars. Astronomische Nachrichten, 2014, 335, 285-290.	1.2	6
116	MAGNETICALLY DRIVEN WINDS FROM DIFFERENTIALLY ROTATING NEUTRON STARS AND X-RAY AFTERGLOWS OF SHORT GAMMA-RAY BURSTS. Astrophysical Journal Letters, 2014, 785, L6.	8.3	117
117	Modelling the magnetic field configuration of neutron stars. Astronomische Nachrichten, 2014, 335, 624-629.	1.2	11
118	Magnetorotational instability in relativistic hypermassive neutron stars. Physical Review D, 2013, 87, .	4.7	110
119	Twisted-torus configurations with large toroidal magnetic fields in relativistic stars. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 435, L43-L47.	3.3	121
120	On the universality of <i>I</i> –Love– <i>Q</i> relations in magnetized neutron stars. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 438, L71-L75.	3.3	87
121	POLOIDAL-FIELD INSTABILITY IN MAGNETIZED RELATIVISTIC STARS. Astrophysical Journal, 2012, 760, 1.	4.5	64
122	INSTABILITY-DRIVEN EVOLUTION OF POLOIDAL MAGNETIC FIELDS IN RELATIVISTIC STARS. Astrophysical Journal Letters, 2011, 736, L6.	8.3	63
123	Stochastic background of gravitational waves emitted by magnetars. Monthly Notices of the Royal Astronomical Society, 2011, 411, 2549-2557.	4.4	47
124	Structure, deformations and gravitational wave emission of magnetars. Classical and Quantum Gravity, 2011, 28, 114014.	4.0	21
125	Structure and deformations of strongly magnetized neutron stars with twisted-torus configurations. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2540-2548.	4.4	85
126	Relativistic models of magnetars: the twisted torus magnetic field configuration. Monthly Notices of the Royal Astronomical Society, 2009, 397, 913-924.	4.4	108