
Weichang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8684496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Blue Emission from Self-Trapped Excitons in Stable Sb ³⁺ -Doped Cs ₂ NaInCl ₆ Double Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 2053-2061.	4.6	259
2	Continuous Alloy-Composition Spatial Grading and Superbroad Wavelength-Tunable Nanowire Lasers on a Single Chip. Nano Letters, 2009, 9, 784-788.	9.1	191
3	Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Research, 2021, 14, 1551-1558.	10.4	127
4	Homo- and Heterovalent Doping-Mediated Self-Trapped Exciton Emission and Energy Transfer in Mn-Doped Cs ₂ Na _{1–<i>x</i>} Ag _{<i>x</i>} BiCl ₆ Double Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 340-348.	4.6	104
5	Highly Robust Nonâ€Noble Alkaline Hydrogenâ€Evolving Electrocatalyst from Seâ€Doped Molybdenum Disulfide Particles on Interwoven CoSe ₂ Nanowire Arrays. Small, 2020, 16, e1906629.	10.0	70
6	Bound Exciton and Optical Properties of SnO ₂ One-Dimensional Nanostructures. Journal of Physical Chemistry C, 2009, 113, 1719-1726.	3.1	66
7	Controlled Structural Transformation in Sbâ€Doped Indium Halides A ₃ InCl ₆ and A ₂ InCl ₅ â^™H ₂ O Yields Reversible Greenâ€toâ€Yellow Emission Switch. Advanced Optical Materials, 2021, 9, 2002267.	7.3	55
8	Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Advances, 2014, 4, .	1.3	47
9	Simultaneous Triplet Exciton–Phonon and Exciton–Photon Photoluminescence in the Individual Weak Confinement CsPbBr ₃ Micro/Nanowires. Journal of Physical Chemistry C, 2019, 123, 25349-25358.	3.1	47
10	Ultrathin MoO2 nanosheets with good thermal stability and high conductivity. AIP Advances, 2017, 7, .	1.3	37
11	Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures. Journal of Physical Chemistry C, 2011, 115, 1415-1421.	3.1	33
12	Tinâ€Assisted Sb ₂ S ₃ Nanoparticles Uniformly Grafted on Graphene Effectively Improves Sodiumâ€Ion Storage Performance. ChemElectroChem, 2018, 5, 811-816.	3.4	33
13	Spin–exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon. Nanotechnology, 2017, 28, 105202.	2.6	29
14	In-Plane Anisotropic Raman Response and Electrical Conductivity with Robust Electron–Photon and Electron–Phonon Interactions of Air Stable MoO ₂ Nanosheets. Journal of Physical Chemistry Letters, 2019, 10, 2182-2190.	4.6	28
15	Multi-layered MoS ₂ phototransistors as high performance photovoltaic cells and self-powered photodetectors. RSC Advances, 2015, 5, 45239-45248.	3.6	27
16	Luminescence and local photonic confinement of single ZnSe:Mn nanostructure and the shape dependent lasing behavior. Nanotechnology, 2013, 24, 055201.	2.6	24
17	Anomalous Temperature-Dependent Raman Scattering of Vapor-Deposited Two-Dimensional Bi Thin Films. Journal of Physical Chemistry C, 2018, 122, 24459-24466.	3.1	22
18	Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation. Scientific Reports, 2016, 6, 32712.	3.3	21

WEICHANG ZHOU

#	Article	IF	CITATIONS
19	Synthesis and photoluminescence of pure and Mn doped CdS nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 162-166.	2.7	19
20	Temperature-Dependent Raman Scattering of Large Size Hexagonal Bi2Se3 Single-Crystal Nanoplates. Applied Sciences (Switzerland), 2018, 8, 1794.	2.5	19
21	TiO2 Nanosheet Arrays with Layered SnS2 and CoOx Nanoparticles for Efficient Photoelectrochemical Water Splitting. Nanoscale Research Letters, 2019, 14, 342.	5.7	18
22	Reconfigurable resistive switching devices based on individual tungsten trioxide nanowires. AIP Advances, 2013, 3, .	1.3	17
23	Ultrahigh sensitivity and gain white light photodetector based on GaTe/Sn : CdS nanoflake/nanowire heterostructures. Nanotechnology, 2014, 25, 445202.	2.6	17
24	Surface polarons and optical micro-cavity modulated broad range multi-mode emission of Te-doped CdS nanowires. Nanotechnology, 2018, 29, 465709.	2.6	17
25	Raman investigation of layered ZrGeTe4 semiconductor. Applied Physics Letters, 2019, 114, .	3.3	17
26	Ultrafast hydrogen-ion storage in MoO3 nanoribbons. Solid State Ionics, 2020, 353, 115380.	2.7	17
27	1D ZnSSeâ€ZnSe Axial Heterostructure and its Application for Photodetectors. Advanced Electronic Materials, 2019, 5, 1800770.	5.1	16
28	Amorphous Co–Pi anchored on CdSe/TiO2 nanowire arrays for efficient photoelectrochemical hydrogen production. Journal of Materials Science, 2019, 54, 3284-3293.	3.7	16
29	High-performance photodetectors based on bandgap engineered novel layer GaSe _{0.5} Te _{0.5} nanoflakes. RSC Advances, 2016, 6, 60862-60868.	3.6	15
30	Branched TiO ₂ Nanorod Arrays Decorated with Au Nanostructure for Plasmon-Enhanced Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 2020, 167, 026509.	2.9	15
31	Positive and Negative Photoconductivity Conversion Induced by H2O Molecule Adsorption in WO3 Nanowire. Nanoscale Research Letters, 2019, 14, 144.	5.7	14
32	Structure and optical properties of pure and doped ZnO 1D nanostructures. Materials Letters, 2013, 91, 369-371.	2.6	13
33	The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts. Nanoscale Research Letters, 2013, 8, 314.	5.7	12
34	Electrical characterization of H2S adsorption on hexagonal WO3 nanowire at room temperature. Journal of Applied Physics, 2014, 116, 164310.	2.5	10
35	Cavity-Enhanced Microphotoluminescence in a Core–Shell n–p CdS/CdO Micrometer Wire and Its Efficient Surface Photovoltage Responses in the Whole Visible Range. Journal of Physical Chemistry C, 2017, 121, 14349-14358.	3.1	10
36	High-performance near-infrared photodetector based on quasi one-dimensional layered (TaSe4)2I. Applied Physics Letters, 2021, 119, .	3.3	8

WEICHANG ZHOU

#	Article	IF	CITATIONS
37	Temperature dependent Raman of BiTe nanotubes. AIP Advances, 2018, 8, .	1.3	7
38	Effect of hydrogen ions in the adsorbed water layer on the resistive switching properties of hexagonal WO3 nanowire. Journal of Applied Physics, 2019, 126, 054303.	2.5	5
39	Colorâ€Ţunable Photoluminescence and Whispering Gallery Mode Lasing of Alloyed CsPbCl _{3(1–} <i>_x</i> ₎ Br ₃ <i>_x</i> Microstructures. Advanced Materials Interfaces, 2020, 7, 1902126.	3.7	5
40	Surface polarity induced three-dimensional wurtzite ZnS/ZnSxSe1â^'x nano-heterostructures with integrating emission property. CrystEngComm, 2013, 15, 9988.	2.6	3
41	Strong temperature-strain coupling in the interface of Sb thin film on flexible PDMS substrate. Applied Physics Letters, 2019, 115, .	3.3	3
42	Optimization of hydrogen-ion storage performance of tungsten trioxide nanowires by niobium doping. Nanotechnology, 2022, 33, 105403.	2.6	3
43	Stable green and red dual-color emission in all-inorganic halide-mixed perovskite single microsheets. RSC Advances, 2020, 10, 18368-18376.	3.6	2
44	Photoluminescence and Boosting Electron–Phonon Coupling in CdS Nanowires with Variable Sn(IV) Dopant Concentration. Nanoscale Research Letters, 2021, 16, 19.	5.7	2
45	Wide spectrum multi-sub-band modulation of excitons and defect state emission simultaneously in surface oxidized CdS micro/nano-wires. AIP Advances, 2020, 10, 125213.	1.3	0
46	Emission enhancement and exciton species modulation in monolayer WS ₂ via decoration of CdTe quantum dots. Applied Physics Letters, 2022, 120, 261105.	3.3	0