
Isabelle mouyna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8684494/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights in the molecular mechanisms of an azole stress adapted laboratory-generated Aspergillus fumigatus strain. Medical Mycology, 2021, 59, 763-772.	0.7	3

2 Aspergillus fumigatus, One Uninucleate Species with Disparate Offspring. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

3	What Are the Functions of Chitin Deacetylases in Aspergillus fumigatus?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 28.	3.9	23
4	GPI Anchored Proteins in Aspergillus fumigatus and Cell Wall Morphogenesis. Current Topics in Microbiology and Immunology, 2020, 425, 167-186.	1.1	16
5	<i>Aspergillus fumigatus</i> exoβ(1â€3)glucanases family GH55 are essential for conidial cell wall morphogenesis. Cellular Microbiology, 2019, 21, e13102.	2.1	12
6	<i>Aspergillus fumigatus</i> corneal infection is regulated by chitin synthases and by neutrophil–derived acidic mammalian chitinase. European Journal of Immunology, 2019, 49, 918-927.	2.9	21
7	The Glycosylphosphatidylinositol-Anchored <i>DFG</i> Family Is Essential for the Insertion of Galactomannan into the β-(1,3)-Glucan–Chitin Core of the Cell Wall of Aspergillus fumigatus. MSphere, 2019, 4, .	2.9	28
8	Members of Glycosyl-Hydrolase Family 17 of A. fumigatus Differentially Affect Morphogenesis. Journal of Fungi (Basel, Switzerland), 2018, 4, 18.	3.5	30
9	Glycosylphosphatidylinositol Anchors from Galactomannan and GPI-Anchored Protein Are Synthesized by Distinct Pathways in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2018, 4, 19.	3.5	19
10	The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall. MBio, 2017, 8, .	4.1	84
11	MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2017, 105, 880-900.	2.5	31
12	GH16 and GH81 family β-(1,3)-glucanases in <i>Aspergillus fumigatus</i> are essential for conidial cell wall morphogenesis. Cellular Microbiology, 2016, 18, 1285-1293.	2.1	47
13	Biosynthesis of cell wall mannan in the conidium and the mycelium of <i>Aspergillusfumigatus</i> . Cellular Microbiology, 2016, 18, 1881-1891.	2.1	46
14	Cell Wall of Aspergillus fumigatus: a Dynamic Structure. , 2014, , 169-183.		10
15	SUN Proteins Belong to a Novel Family of β-(1,3)-Glucan-modifying Enzymes Involved in Fungal Morphogenesis. Journal of Biological Chemistry, 2013, 288, 13387-13396.	3.4	34
16	β-1,3-glucan modifying enzymes in Aspergillus fumigatus. Frontiers in Microbiology, 2013, 4, 81.	3.5	111
17	Dandruff Is Associated with Disequilibrium in the Proportion of the Major Bacterial and Fungal Populations Colonizing the Scalp. PLoS ONE, 2013, 8, e58203.	2.5	142
18	Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to Echinocandins. Antimicrobial Agents and Chemotherapy, 2012, 56, 6121-6131.	3.2	53

ISABELLE MOUYNA

#	Article	IF	CITATIONS
19	Innate Immunity and the Role of Epithelial Barrier During Aspergillus fumigatus Infection. Current Immunology Reviews, 2012, 8, 254-261.	1.2	11
20	Phylogenetic and Functional Analysis of Aspergillus fumigatus MGTC, a Fungal Protein Homologous to a Bacterial Virulence Factor. Applied and Environmental Microbiology, 2011, 77, 4700-4703.	3.1	11
21	Members of protein Oâ€mannosyltransferase family in <i>Aspergillus fumigatus</i> differentially affect growth, morphogenesis and viability. Molecular Microbiology, 2010, 76, 1205-1221.	2.5	81
22	β(1-3)Glucanosyltransferase Gel4p Is Essential for Aspergillus fumigatus. Eukaryotic Cell, 2010, 9, 1294-1298.	3.4	84
23	Characterization of a New β(1–3)-Glucan Branching Activity of Aspergillus fumigatus. Journal of Biological Chemistry, 2010, 285, 2386-2396.	3.4	72
24	Molecular Mechanisms of Yeast Cell Wall Glucan Remodeling. Journal of Biological Chemistry, 2009, 284, 8461-8469.	3.4	67
25	Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatusorganisms. BMC Microbiology, 2009, 9, 33.	3.3	67
26	Testing the efficacy of RNA interference constructs in Aspergillus fumigatus. Current Genetics, 2007, 51, 277-284.	1.7	41
27	Glycosylphosphatidylinositol-Anchored Ecm33p Influences Conidial Cell Wall Biosynthesis in Aspergillus fumigatus. Applied and Environmental Microbiology, 2006, 72, 3259-3267.	3.1	58
28	Deletion of <i>GEL2</i> encoding for a l²(1–3)glucanosyltransferase affects morphogenesis and virulence in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2005, 56, 1675-1688.	2.5	146
29	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
30	Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiology Letters, 2004, 237, 317-324.	1.8	99
31	Gene silencing with RNA interference in the human pathogenic fungus. FEMS Microbiology Letters, 2004, 237, 317-324.	1.8	100
32	Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus The GenBank accession number for the A. fumigatus PHOA sequence reported in this paper is AF462065 Microbiology (United Kingdom), 2002, 148, 2819-2829.	1.8	61
33	Identification of the catalytic residues of the first family of β(1‒3)glucanosyltransferases identified in fungi. Biochemical Journal, 2000, 347, 741.	3.7	21
34	Identification of the catalytic residues of the first family of β(1–3)glucanosyltransferases identified in fungi. Biochemical Journal, 2000, 347, 741-747.	3.7	66
35	Glycosylphosphatidylinositol-anchored Glucanosyltransferases Play an Active Role in the Biosynthesis of the Fungal Cell Wall. Journal of Biological Chemistry, 2000, 275, 14882-14889.	3.4	308