## Qing Zhang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/868442/publications.pdf

Version: 2024-02-01

170 papers 19,681 citations

23567 58 h-index 137 g-index

171 all docs

171 docs citations

times ranked

171

24553 citing authors

| #  | Article                                                                                                                                                                                             | IF           | Citations |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 1  | Edge Raman enhancement at layered Pbl <sub>2</sub> platelets induced by laser waveguide effect. Nanotechnology, 2022, 33, 035203.                                                                   | 2.6          | 2         |
| 2  | Software-defect prediction within and across projects based on improved self-organizing data mining. Journal of Supercomputing, 2022, 78, 6147-6173.                                                | 3 <b>.</b> 6 | 3         |
| 3  | Spontaneous formation and spatial self-organization of mechanically induced mesenchymal-like cells within geometrically confined cancer cell monolayers. Biomaterials, 2022, 281, 121337.           | 11.4         | 6         |
| 4  | Additiveâ€Assisted Growth of Scaled and Quality 2D Materials. Small, 2022, 18, e2107241.                                                                                                            | 10.0         | 11        |
| 5  | Vapor-Phase Living Assembly of π-Conjugated Organic Semiconductors. ACS Nano, 2022, 16, 3290-3299.                                                                                                  | 14.6         | 12        |
| 6  | Strong Piezoelectricity in 3Râ€MoS <sub>2</sub> Flakes. Advanced Electronic Materials, 2022, 8, .                                                                                                   | 5.1          | 20        |
| 7  | Controllable Synthesis of Atomically Thin 1Tâ€SnSe <sub>2</sub> Flakes and Its Linear Second Harmonic Generation with Layer Thickness. Advanced Materials Interfaces, 2022, 9, .                    | 3.7          | 3         |
| 8  | Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. Science China Life Sciences, 2022, 65, 2031-2049.                | 4.9          | 13        |
| 9  | Pattern-Selective Molecular Epitaxial Growth of Single-Crystalline Perovskite Arrays toward Ultrasensitive and Ultrafast Photodetector. Nano Letters, 2022, 22, 2948-2955.                          | 9.1          | 8         |
| 10 | Room-temperature Near-infrared Excitonic Lasing from Mechanically Exfoliated InSe Microflake. ACS Nano, 2022, 16, 1477-1485.                                                                        | 14.6         | 11        |
| 11 | Ultrafast Antisolvent Growth of Single-Crystalline CsPbCl <sub>3</sub> Microcavity for Low-Threshold Room Temperature Blue Lasing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21356-21362. | 8.0          | 6         |
| 12 | Energy Consumption Analysis of High-Speed Trains under Real Vehicle Test Conditions. Journal of Advanced Transportation, 2022, 2022, 1-13.                                                          | 1.7          | 1         |
| 13 | Engineering Near-Infrared Light Emission in Mechanically Exfoliated InSe Platelets through Hydrostatic Pressure for Multicolor Microlasing. Nano Letters, 2022, 22, 3840-3847.                      | 9.1          | 11        |
| 14 | All Optical Switching through Anistropic Gain of CsPbBr <sub>3</sub> Single Crystal Microplatelet. Nano Letters, 2022, 22, 4049-4057.                                                               | 9.1          | 29        |
| 15 | Atomic structure and electrical/ionic activity of antiphase boundary in CH3NH3PbI3. Acta Materialia, 2022, 234, 118010.                                                                             | 7.9          | 6         |
| 16 | Influence of intrinsic or extrinsic doping on charge state of carbon and its interaction with hydrogen in GaN. Applied Physics Letters, 2022, 120, .                                                | 3.3          | 2         |
| 17 | Ultrafast Internal Exciton Dissociation through Edge States in MoS <sub>2</sub> Nanosheets with Diffusion Blocking. Nano Letters, 2022, 22, 5651-5658.                                              | 9.1          | 16        |
| 18 | High-Temperature Dry Sliding Wear Behavior of Al–12Si–CuNiMg Alloy and its Al2O3 Fiber-Reinforced Composite. Metals and Materials International, 2021, 27, 3641-3651.                               | 3.4          | 4         |

| #  | Article                                                                                                                                                                                                               | IF   | Citations |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Research, 2021, 14, 1937-1954.                                                                   | 10.4 | 36        |
| 20 | A novel software defect prediction approach using modified objective cluster analysis. Concurrency Computation Practice and Experience, 2021, 33, e6112.                                                              | 2.2  | 2         |
| 21 | Solvent regulation synthesis of single-component white emission carbon quantum dots for white light-emitting diodes. Nanotechnology Reviews, 2021, 10, 465-477.                                                       | 5.8  | 23        |
| 22 | Strain-Modulated Photoelectric Responses from a Flexible $\hat{l}_{\pm}$ -In2Se3/3R MoS2 Heterojunction. Nano-Micro Letters, 2021, 13, 74.                                                                            | 27.0 | 31        |
| 23 | High Optical Gain of Solutionâ€Processed Mixedâ€Cation CsPbBr <sub>3</sub> Thin Films towards Enhanced Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2102210.                              | 14.9 | 35        |
| 24 | Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. Nano Letters, 2021, 21, 4137-4144.                                                        | 9.1  | 22        |
| 25 | Millimeter-scale growth of highly ordered CsPbBr <sub>3</sub> single-crystalline microplatelets on SiO <sub>2</sub> /Si substrate by chemical vapor deposition. Journal Physics D: Applied Physics, 2021, 54, 334004. | 2.8  | 4         |
| 26 | Perovskite semiconductors for room-temperature exciton-polaritonics. Nature Materials, 2021, 20, 1315-1324.                                                                                                           | 27.5 | 109       |
| 27 | Solvent Recrystallizationâ€Enabled Green Amplified Spontaneous Emissions with an Ultra‣ow<br>Threshold from Pinholeâ€Free Perovskite Films. Advanced Functional Materials, 2021, 31, 2106108.                         | 14.9 | 31        |
| 28 | Atomic-scale imaging of CH3NH3Pbl3 structure and its decomposition pathway. Nature Communications, 2021, 12, 5516.                                                                                                    | 12.8 | 36        |
| 29 | Interface nano-optics with van der Waals polaritons. Nature, 2021, 597, 187-195.                                                                                                                                      | 27.8 | 143       |
| 30 | Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Letters, 2021, 21, 1903-1914.                                                                                               | 9.1  | 220       |
| 31 | Inch-Scale Ball-in-Bowl Plasmonic Nanostructure Arrays for Polarization-Independent<br>Second-Harmonic Generation. ACS Nano, 2021, 15, 1291-1300.                                                                     | 14.6 | 19        |
| 32 | Analysis of multiple failure behaviors of steering knuckle ball hinge of multi-axle heavy vehicle. Advances in Mechanical Engineering, 2021, 13, 168781402110522.                                                     | 1.6  | 1         |
| 33 | Hyperbranched Microwire Networks of Organic Cocrystals with Optical Waveguiding and Lightâ€Harvesting Abilities. Angewandte Chemie - International Edition, 2021, 60, 27046-27052.                                    | 13.8 | 17        |
| 34 | Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nature Communications, 2021, 12, 6425.                                                                   | 12.8 | 58        |
| 35 | Enhanced Optical Absorption and Slowed Light of Reduced-Dimensional CsPbBr <sub>3</sub> Nanowire Crystal by Exciton–Polariton. Nano Letters, 2020, 20, 1023-1032.                                                     | 9.1  | 55        |
| 36 | Atomically Dispersed Co–P <sub>3</sub> on CdS Nanorods with Electronâ€Rich Feature Boosts Photocatalysis. Advanced Materials, 2020, 32, e1904249.                                                                     | 21.0 | 105       |

| #  | Article                                                                                                                                                                                                     | IF   | Citations |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity. ACS Photonics, 2020, 7, 327-337.                                                                                   | 6.6  | 36        |
| 38 | Controlled Growth and Thicknessâ€Dependent Conductionâ€Type Transition of 2D Ferrimagnetic Cr <sub>2</sub> S <sub>3</sub> Semiconductors. Advanced Materials, 2020, 32, e1905896.                           | 21.0 | 114       |
| 39 | Perovskite quantum dot lasers. InformaÄnÃ-Materiály, 2020, 2, 170-183.                                                                                                                                      | 17.3 | 97        |
| 40 | Direct evidence of hydrogen interaction with carbon: Câ $\in$ "H complex in semi-insulating GaN. Applied Physics Letters, 2020, 116, .                                                                      | 3.3  | 12        |
| 41 | Large-Scale Thin CsPbBr <sub>3</sub> Single-Crystal Film Grown on Sapphire <i>via</i> Chemical Vapor Deposition: Toward Laser Array Application. ACS Nano, 2020, 14, 15605-15615.                           | 14.6 | 112       |
| 42 | Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr <sub>3</sub> Perovskite Laser. Nano Letters, 2020, 20, 6636-6643.                                                                | 9.1  | 145       |
| 43 | Graphoepitaxy of Large Scale, Highly Ordered CsPbBr 3 Nanowire Array on Muscovite Mica (001) Driven by Surface Reconstructed Grooves. Advanced Optical Materials, 2020, 8, 2000743.                         | 7.3  | 15        |
| 44 | Enhanced Trion Emission and Carrier Dynamics in Monolayer WS <sub>2</sub> Coupled with Plasmonic Nanocavity. Advanced Optical Materials, 2020, 8, 2001147.                                                  | 7.3  | 36        |
| 45 | Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges. ACS Nano, 2020, 14, 14375-14390.                                                                                                   | 14.6 | 52        |
| 46 | Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 2020, 11, 6086.                                                                         | 12.8 | 67        |
| 47 | Topological polaritons and photonic magic angles in twisted $\hat{l}_{\pm}$ -MoO3 bilayers. Nature, 2020, 582, 209-213.                                                                                     | 27.8 | 413       |
| 48 | Advanced optical gain materials keep on giving. Science China Materials, 2020, 63, 1345-1347.                                                                                                               | 6.3  | 4         |
| 49 | Cyclic stress-assisted surface diffusion and stress concentration of machined surface topography. Engineering Fracture Mechanics, 2020, 234, 107087.                                                        | 4.3  | 2         |
| 50 | Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2. Nano Research, 2020, 13, 667-675.                                                                                  | 10.4 | 19        |
| 51 | Inner-Stress-Optimized High-Density Fe <sub>3</sub> O <sub>4</sub> Dots Embedded in Graphitic Carbon Layers with Enhanced Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15043-15052. | 8.0  | 20        |
| 52 | Analysis of factors affecting traction energy consumption of electric multiple unit trains based on data mining. Journal of Cleaner Production, 2020, 262, 121374.                                          | 9.3  | 14        |
| 53 | Golden hour for perovskite photonics. Photonics Research, 2020, 8, PP1.                                                                                                                                     | 7.0  | 15        |
| 54 | Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden–Popper Perovskite Engineered by Inorganic Layer Thickness. Advanced Materials, 2019, 31, e1903030.                                             | 21.0 | 128       |

| #  | Article                                                                                                                                                                                                                        | IF           | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 55 | Vapor-Phase Incommensurate Heteroepitaxy of Oriented Single-Crystal CsPbBr <sub>3</sub> on GaN: Toward Integrated Optoelectronic Applications. ACS Nano, 2019, 13, 10085-10094.                                                | 14.6         | 59        |
| 56 | Differences in Dry Sliding Wear Behavior between Al–12Si–CuNiMg Alloy and Its Composite Reinforced with Al2O3 Fibers. Materials, 2019, 12, 1749.                                                                               | 2.9          | 7         |
| 57 | High quality two-photon pumped whispering-gallery-mode lasing from ultrathin CdS microflakes.<br>Journal of Materials Chemistry C, 2019, 7, 12869-12875.                                                                       | <b>5.</b> 5  | 8         |
| 58 | Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Communications Physics, 2019, 2, .                                                             | <b>5.</b> 3  | 36        |
| 59 | Highâ€Quality Hexagonal Nonlayered CdS Nanoplatelets for Lowâ€Threshold Whisperingâ€Galleryâ€Mode<br>Lasing. Small, 2019, 15, e1901364.                                                                                        | 10.0         | 24        |
| 60 | Probing Far-Infrared Surface Phonon Polaritons in Semiconductor Nanostructures at Nanoscale. Nano Letters, 2019, 19, 5070-5076.                                                                                                | 9.1          | 16        |
| 61 | Exciton–polaritons in semiconductors. Journal of Semiconductors, 2019, 40, 090401.                                                                                                                                             | 3.7          | 5         |
| 62 | Semiconductor nanowire plasmonic lasers. Nanophotonics, 2019, 8, 2091-2110.                                                                                                                                                    | 6.0          | 40        |
| 63 | Twisted-Angle-Dependent Optical Behaviors of Intralayer Excitons and Trions in WS <sub>2</sub> /WSe <sub>2</sub> Heterostructure. ACS Photonics, 2019, 6, 3082-3091.                                                           | 6.6          | 41        |
| 64 | Anisotropic Growth and Scanning Tunneling Microscopy Identification of Ultrathin Even‣ayered PdSe <sub>2</sub> Ribbons. Small, 2019, 15, e1902789.                                                                             | 10.0         | 50        |
| 65 | Scalable Production of Two-Dimensional Metallic Transition Metal Dichalcogenide Nanosheet Powders Using NaCl Templates toward Electrocatalytic Applications. Journal of the American Chemical Society, 2019, 141, 18694-18703. | 13.7         | 56        |
| 66 | Unveiling lasing mechanism in CsPbBr <sub>3</sub> microsphere cavities. Nanoscale, 2019, 11, 3145-3153.                                                                                                                        | 5 <b>.</b> 6 | 71        |
| 67 | Surfaceâ€Plasmonâ€Assisted Metal Halide Perovskite Small Lasers. Advanced Optical Materials, 2019, 7, 1900279.                                                                                                                 | 7.3          | 35        |
| 68 | Continuousâ€Wave Pumped Perovskite Lasers. Advanced Optical Materials, 2019, 7, 1900544.                                                                                                                                       | 7.3          | 42        |
| 69 | Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated Organometallic Halide Perovskites. ACS Omega, 2019, 4, 9150-9159.                                                                      | 3.5          | 26        |
| 70 | Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. Journal of Semiconductors, 2019, 40, 052201.                                                                                                    | 3.7          | 16        |
| 71 | Charge-Transfer-Induced Photoluminescence Properties of WSe <sub>2</sub> Monolayer–Bilayer Homojunction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20566-20573.                                                      | 8.0          | 15        |
| 72 | Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Research, 2019, 12, 1619-1624.                                                                                                                  | 10.4         | 30        |

| #  | Article                                                                                                                                                                                                               | IF           | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 73 | Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Applied Physics Letters, 2019, 114, .                                                                                             | 3.3          | 59        |
| 74 | Boosting the electrocatalytic activity of amorphous molybdenum sulfide nanoflakes <i>via</i> nickel sulfide decoration. Nanoscale, 2019, 11, 22971-22979.                                                             | 5 <b>.</b> 6 | 19        |
| 75 | Intercalation-Mediated Synthesis and Interfacial Coupling Effect Exploration of Unconventional Graphene/PtSe <sub>2</sub> Vertical Heterostructures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48221-48229. | 8.0          | 7         |
| 76 | Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode?. Journal of Chemical Physics, 2019, 151, 211101.                                                                   | 3.0          | 12        |
| 77 | Epitaxial Growth of Two-Dimensional Metal–Semiconductor Transition-Metal Dichalcogenide<br>Vertical Stacks (VSe <sub>2</sub> /MX <sub>2</sub> ) and Their Band Alignments. ACS Nano, 2019, 13,<br>885-893.            | 14.6         | 102       |
| 78 | Recent Progress of Strong Exciton–Photon Coupling in Lead Halide Perovskites. Advanced Materials, 2019, 31, e1804894.                                                                                                 | 21.0         | 60        |
| 79 | Nanowire-Based Lasers. Nanostructure Science and Technology, 2019, , 367-393.                                                                                                                                         | 0.1          | 1         |
| 80 | Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Research, 2019, 12, 149-157.                                                                                                        | 10.4         | 22        |
| 81 | Vertical 1Tâ€TaS <sub>2</sub> Synthesis on Nanoporous Gold for Highâ€Performance Electrocatalytic Applications. Advanced Materials, 2018, 30, e1705916.                                                               | 21.0         | 75        |
| 82 | Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nature Communications, 2018, 9, 979.                                                                                  | 12.8         | 338       |
| 83 | Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe <sub>2</sub> single crystals on Au foils. Nanotechnology, 2018, 29, 204003.                                       | 2.6          | 16        |
| 84 | Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7289-7295.                                             | 8.0          | 29        |
| 85 | Unraveling the Growth of Hierarchical Quasi-2D/3D Perovskite and Carrier Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 1124-1132.                                                                         | 4.6          | 52        |
| 86 | Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires. Advanced Optical Materials, 2018, 6, 1701032.                                                                                  | 7.3          | 114       |
| 87 | Fabry–Pérot Oscillation and Room Temperature Lasing in Perovskite Cubeâ€Corner Pyramid Cavities.<br>Small, 2018, 14, 1703136.                                                                                         | 10.0         | 61        |
| 88 | Surface Plasmon Enhanced Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Nanowires. Nano Letters, 2018, 18, 3335-3343.                                                                          | 9.1          | 133       |
| 89 | High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.                                                                                                                      | 13.6         | 757       |
| 90 | Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Communications Chemistry, 2018, $1$ , .                                                                  | 4.5          | 58        |

| #   | Article                                                                                                                                                                             | IF           | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 91  | Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures. Journal of Physical Chemistry Letters, 2018, 9, 1655-1662.                    | 4.6          | 75        |
| 92  | Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr <sub>3</sub> Micro/Nanowire Fabry-Pérot Cavity. ACS Photonics, 2018, 5, 2051-2059.                       | 6.6          | 145       |
| 93  | Research progress of low-dimensional metal halide perovskites for lasing applications. Chinese Physics B, 2018, 27, 114209.                                                         | 1.4          | 10        |
| 94  | Unambiguous Identification of Carbon Location on the N Site in Semi-insulating GaN. Physical Review Letters, 2018, 121, 145505.                                                     | 7.8          | 45        |
| 95  | Identifying the Non-Identical Outermost Selenium Atoms and Invariable Band Gaps across the Grain Boundary of Anisotropic Rhenium Diselenide. ACS Nano, 2018, 12, 10095-10103.       | 14.6         | 25        |
| 96  | Chemical Vapor Deposition Grown Waferâ€Scale 2D Tantalum Diselenide with Robust<br>Chargeâ€Densityâ€Wave Order. Advanced Materials, 2018, 30, e1804616.                             | 21.0         | 63        |
| 97  | Allâ€Inorganic CsPbBr <sub>3</sub> Nanowire Based Plasmonic Lasers. Advanced Optical Materials, 2018, 6, 1800674.                                                                   | <b>7.</b> 3  | 107       |
| 98  | Low Threshold Fabry–Pérot Mode Lasing from Lead Iodide Trapezoidal Nanoplatelets. Small, 2018, 14, e1801938.                                                                        | 10.0         | 17        |
| 99  | High-Temperature Continuous-Wave Pumped Lasing from Large-Area Monolayer Semiconductors<br>Grown by Chemical Vapor Deposition. ACS Nano, 2018, 12, 9390-9396.                       | 14.6         | 44        |
| 100 | The Auger process in multilayer WSe <sub>2</sub> crystals. Nanoscale, 2018, 10, 17585-17592.                                                                                        | 5 <b>.</b> 6 | 20        |
| 101 | Ultrathin CsPbX <sub>3</sub> Nanowire Arrays with Strong Emission Anisotropy. Advanced Materials, 2018, 30, e1801805.                                                               | 21.0         | 135       |
| 102 | Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606774.                                             | 21.0         | 318       |
| 103 | Thermal conductivity of suspended single crystal CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub> platelets at room temperature. Nanoscale, 2017, 9, 8281-8287.                     | 5 <b>.</b> 6 | 20        |
| 104 | 3R MoS <sub>2</sub> with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device. Advanced Materials, 2017, 29, 1701486.                                          | 21.0         | 197       |
| 105 | Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS <sub>2</sub> / <i>h</i> -BN van der Waals Heterostructures on Au Foils. ACS Nano, 2017, 11, 4328-4336. | 14.6         | 87        |
| 106 | Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science, 2017, 8, 2522-2536.                                                                            | 7.4          | 233       |
| 107 | Surface State Mediated Interlayer Excitons in a 2D Nonlayered–Layered Semiconductor Heterojunction. Advanced Electronic Materials, 2017, 3, 1700373.                                | 5.1          | 15        |
| 108 | Wavelength Tunable Plasmonic Lasers Based on Intrinsic Self-Absorption of Gain Material. ACS Photonics, 2017, 4, 2789-2796.                                                         | 6.6          | 30        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                              | IF                | Citations    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 109 | Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.                                                                                                                                                                                                                                                                                   | 12.8              | 191          |
| 110 | Unveiling Structurally Engineered Carrier Dynamics in Hybrid Quasi-Two-Dimensional Perovskite Thin Films toward Controllable Emission. Journal of Physical Chemistry Letters, 2017, 8, 4431-4438.                                                                                                                                                                                                    | 4.6               | 147          |
| 111 | Tuning Excitonic Properties of Monolayer MoS <sub>2</sub> with Microsphere Cavity by High‶hroughput Chemical Vapor Deposition Method. Small, 2017, 13, 1701694.                                                                                                                                                                                                                                      | 10.0              | 35           |
| 112 | Advances in Small Perovskiteâ€Based Lasers. Small Methods, 2017, 1, 1700163.                                                                                                                                                                                                                                                                                                                         | 8.6               | 268          |
| 113 | Controlled Gas Molecules Doping of Monolayer MoS <sub>2</sub> via Atomic-Layer-Deposited Al <sub>2</sub> O <sub>3</sub> Films. ACS Applied Materials & Deposited Al <sub>2</sub> O <sub>3</sub> Films. ACS Applied Materials & Deposited Al <sub>2</sub> Deposited Al <sub>3</sub> Films. ACS Applied Materials & Deposited Al <sub>3</sub> Films. ACS Applied Materials & Deposited Al <sub>4</sub> | 8.0               | 23           |
| 114 | Phononâ€Assisted Antiâ€Stokes Lasing in ZnTe Nanoribbons. Advanced Materials, 2016, 28, 276-283.                                                                                                                                                                                                                                                                                                     | 21.0              | 41           |
| 115 | Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nature Photonics, 2016, 10, 600-605.                                                                                                                                                                                                                                                                                | 31.4              | 42           |
| 116 | Monitoring of Changes in Composition of Soybean Oil During Deepâ€Fat Frying with Different Food Types. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 69-81.                                                                                                                                                                                                                        | 1.9               | 19           |
| 117 | Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS) Tj ETQq1 1 (                                                                                                                                                                                                                                                                                        | ).784314 ı<br>4.4 | gBT  Overloo |
| 118 | Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 18021-18026.                                                                                                                                                                                                                                                                   | 5.6               | 160          |
| 119 | Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets.<br>Advanced Functional Materials, 2016, 26, 6238-6245.                                                                                                                                                                                                                                              | 14.9              | 529          |
| 120 | High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano, 2016, 10, 6623-6630.                                                                                                                                                                                                                                                                       | 14.6              | 347          |
| 121 | Motion and Constraint Analysis Based on Screw Theory. , 2015, , .                                                                                                                                                                                                                                                                                                                                    |                   | 0            |
| 122 | Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Letters, 2015, 15, 4571-4577.                                                                                                                                                                                                                                                         | 9.1               | 405          |
| 123 | Whispering Gallery Mode Lasing from Hexagonal Shaped Layered Lead Iodide Crystals. ACS Nano, 2015, 9, 687-695.                                                                                                                                                                                                                                                                                       | 14.6              | 118          |
| 124 | Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure. ACS Nano, 2015, 9, 5018-5026.                                                                                                                                                                                                                                                           | 14.6              | 43           |
| 125 | Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering. Optics Express, 2014, 22, 2989.                                                                                                                                                                                                                                                              | 3.4               | 19           |
| 126 | Direct measurement of coherent phonon dynamics in solution-processed stibnite thin films. Physical Review B, 2014, 90, .                                                                                                                                                                                                                                                                             | 3.2               | 13           |

| #   | Article                                                                                                                                                                                                            | IF                 | CITATIONS               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| 127 | Steppedâ€isothermal fatigue analysis of engine piston. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 417-426.                                                                            | 3.4                | 7                       |
| 128 | Monitoring of thermal behavior and decomposition products of soybean oil. Journal of Thermal Analysis and Calorimetry, 2014, 115, 19-29.                                                                           | 3.6                | 26                      |
| 129 | Subâ€100â€nm Sized Silver Split Ring Resonator Metamaterials with Fundamental Magnetic Resonance in the Middle Visible Spectrum. Advanced Optical Materials, 2014, 2, 280-285.                                     | 7.3                | 25                      |
| 130 | Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence. Nanoscale, 2014, 6, 5592-5598.                                                                                           | 5.6                | 53                      |
| 131 | Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards Highâ€Performance<br>Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials, 2014, 2, 838-844.                 | 7.3                | 363                     |
| 132 | Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale, 2014, 6, 132-139.                                                                                  | 5.6                | 48                      |
| 133 | Elucidating the Localized Plasmonic Enhancement Effects from a Single Ag Nanowire in Organic Solar Cells. ACS Nano, 2014, 8, 10101-10110.                                                                          | 14.6               | 33                      |
| 134 | Solar Cells: Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards<br>High-Performance Perovskite Solar Cells and Optoelectronic Devices (Advanced Optical Materials) Tj ETQq0 0 0          | rg <b>BT</b> 3∕Ove | rlo <b>c</b> k 10 Tf 50 |
| 135 | Taming excitons in Il–VI semiconductor nanowires and nanobelts. Journal Physics D: Applied Physics, 2014, 47, 394009.                                                                                              | 2.8                | 6                       |
| 136 | A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications, 2014, 5, 4953.                                                                                                            | 12.8               | 278                     |
| 137 | Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano<br>Letters, 2014, 14, 5995-6001.                                                                                       | 9.1                | 702                     |
| 138 | Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser and Photonics Reviews, 2014, 8, 73-93.                                                                                         | 8.7                | 67                      |
| 139 | Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity. Scientific Reports, 2014, 4, 4839.                                                 | 3.3                | 13                      |
| 140 | Discrimination of Edible Vegetable Oil Adulteration with Used Frying Oil by Low Field Nuclear Magnetic Resonance. Food and Bioprocess Technology, 2013, 6, 2562-2570.                                              | 4.7                | 81                      |
| 141 | In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Research, 2013, 6, 688-692.                                                                                          | 10.4               | 72                      |
| 142 | Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Bursteina€"Moss Effect. Nano Letters, 2013, 13, 5336-5343.                                                                   | 9.1                | 145                     |
| 143 | Solution phase van der Waals epitaxy of ZnO wire arrays. Nanoscale, 2013, 5, 7242.                                                                                                                                 | <b>5.</b> 6        | 27                      |
| 144 | Microstructure evolution of Al–12Si–CuNiMg alloy under high temperature low cycle fatigue. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 574, 186-190. | 5 <b>.</b> 6       | 43                      |

| #   | Article                                                                                                                                                                                           | IF   | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. Nanoscale, 2013, 5, 3570.                                                                     | 5.6  | 144       |
| 146 | Tailoring the Lasing Modes in Semiconductor Nanowire Cavities Using Intrinsic Self-Absorption. Nano Letters, 2013, 13, 1080-1085.                                                                 | 9.1  | 133       |
| 147 | The Growth of Ultralong ZnTe Micro/Nanostructures: The Influence of Polarity and Twin Direction on the Morphogenesis of Nanobelts and Nanosheets. Crystal Growth and Design, 2013, 13, 2590-2596. | 3.0  | 18        |
| 148 | Observation of Selective Plasmon-Exciton Coupling in Nonradiative Energy Transfer: Donor-Selective versus Acceptor-Selective Plexcitons. Nano Letters, 2013, 13, 3065-3072.                       | 9.1  | 77        |
| 149 | Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants. ACS Nano, 2013, 7, 5993-6000.                                     | 14.6 | 218       |
| 150 | Size-Dependent Exciton Recombination Dynamics in Single CdS Nanowires beyond the Quantum Confinement Regime. Journal of Physical Chemistry C, 2013, 117, 10716-10722.                             | 3.1  | 52        |
| 151 | Effect of Fatigue Behavior on Microstructural Features in a Cast Al-12Si-CuNiMg Alloy Under High Cycle Fatigue Loading. Journal of Materials Engineering and Performance, 2013, 22, 3834-3839.    | 2.5  | 6         |
| 152 | Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform. Scientific Reports, 2013, 3, 2437.                     | 3.3  | 38        |
| 153 | A model for predicting the creep-fatigue life under stepped-isothermal fatigue loading. International Journal of Fatigue, 2013, 55, 1-6.                                                          | 5.7  | 11        |
| 154 | Multiple Magnetic Mode-Based Fano Resonance in Split-Ring Resonator/Disk Nanocavities. ACS Nano, 2013, 7, 11071-11078.                                                                            | 14.6 | 97        |
| 155 | Highâ€temperature lowâ€cycle fatigue behaviour of a cast Al–12Si–CuNiMg alloy. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 623-630.                                   | 3.4  | 25        |
| 156 | Highly Enhanced Exciton Recombination Rate by Strong Electron–Phonon Coupling in Single ZnTe Nanobelt. Nano Letters, 2012, 12, 6420-6427.                                                         | 9.1  | 43        |
| 157 | Chemical alterations taken place during deep-fat frying based on certain reaction products: A review. Chemistry and Physics of Lipids, 2012, 165, 662-681.                                        | 3.2  | 267       |
| 158 | Epitaxial II–VI Tripod Nanocrystals: A Generalization of van der Waals Epitaxy for Nonplanar Polytypic Nanoarchitectures. ACS Nano, 2012, 6, 2281-2288.                                           | 14.6 | 52        |
| 159 | Effect of High Hydrostatic Pressure on Physicochemical and Structural Properties of Rice Starch. Food and Bioprocess Technology, 2012, 5, 2233-2241.                                              | 4.7  | 141       |
| 160 | Single-Layer MoS <sub>2</sub> Phototransistors. ACS Nano, 2012, 6, 74-80.                                                                                                                         | 14.6 | 3,103     |
| 161 | Fluorophore-Doped Core–Multishell Spherical Plasmonic Nanocavities: Resonant Energy Transfer toward a Loss Compensation. ACS Nano, 2012, 6, 6250-6259.                                            | 14.6 | 71        |
| 162 | Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz–Keldysh, and Stark Effects. Nano Letters, 2012, 12, 2993-2999.                               | 9.1  | 62        |

| #   | ARTICLE                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | From Bulk to Monolayer MoS <sub>2</sub> : Evolution of Raman Scattering. Advanced Functional Materials, 2012, 22, 1385-1390.                                                                                                                   | 14.9 | 3,354     |
| 164 | Compositionâ€Tunable Vertically Aligned CdS <sub><i>x</i></sub> Se <sub>1â€<i>x</i></sub> Nanowire Arrays via van der Waals Epitaxy: Investigation of Optical Properties and Photocatalytic Behavior. Advanced Materials, 2012, 24, 4151-4156. | 21.0 | 69        |
| 165 | Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy. Food Chemistry, 2012, 132, 1607-1613.                                                                                     | 8.2  | 132       |
| 166 | Modulating Resonance Modes and $\langle i \rangle Q \langle  i \rangle$ Value of a CdS Nanowire Cavity by Single Ag Nanoparticles. Nano Letters, 2011, 11, 4270-4274.                                                                          | 9.1  | 33        |
| 167 | Tuning Gold Nanorod-Nanoparticle Hybrids into Plasmonic Fano Resonance for Dramatically Enhanced Light Emission and Transmission. Nano Letters, 2011, 11, 49-55.                                                                               | 9.1  | 104       |
| 168 | Effects of potassium alum addition on physicochemical, pasting, thermal and gel texture properties of potato starch. International Journal of Food Science and Technology, 2011, 46, 1621-1627.                                                | 2.7  | 18        |
| 169 | Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing. Nano Letters, 2011, 11, 3232-3238.                                                                                         | 9.1  | 215       |
| 170 | Scattering focusing and localized surface plasmons in a single Ag nanoring. Applied Physics Letters, 2010, 97, .                                                                                                                               | 3.3  | 17        |