Antonino Pollicino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/868351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polystyrene-Clay Nanocomposites Prepared with Polymerizable Imidazolium Surfactants. Macromolecular Rapid Communications, 2003, 24, 1079-1084.	3.9	96
2	UV-curable systems containing perfluoropolyether structures: Synthesis and characterisation. Macromolecular Chemistry and Physics, 1997, 198, 1893-1907.	2.2	84
3	New fluorinated acrylic monomers for the surface modification of UV-curable systems. Journal of Polymer Science Part A, 1999, 37, 77-87.	2.3	67
4	Perfluoropolyether structures as surface modifying agents of UV-curable systems. Macromolecular Chemistry and Physics, 1998, 199, 1099-1105.	2.2	61
5	Fluorinated epoxides as surface modifying agents of UV-curable systems. Journal of Applied Polymer Science, 2003, 89, 1524-1529.	2.6	54
6	New perfluoropolyether urethane methacrylates as surface modifiers: Effect of molecular weight and end group structure. Reactive and Functional Polymers, 2008, 68, 189-200.	4.1	53
7	Effect of the structural parameters of a series of fluoromonoacrylates on the surface properties of cured films. Journal of Polymer Science Part A, 2001, 39, 4227-4235.	2.3	50
8	Ionic electroactive polymer metal composites: Fabricating, modeling, and applications of postsilicon smart devices. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 699-734.	2.1	50
9	Chemical modifications, mechanical properties and surface photo-oxidation of films of polystyrene (PS). Polymer Testing, 2004, 23, 405-411.	4.8	48
10	Surface-Initiated ATRP Modification of Tissue Culture Substrates: Poly(glycerol monomethacrylate) as an Antifouling Surface. Biomacromolecules, 2009, 10, 3130-3140.	5.4	41
11	Synthesis, characterization and study of the thermal properties of new polyarylene ethers. Polymer, 1992, 33, 1976-1981.	3.8	40
12	XPS Study on Surface Segregation in Poly(ethylene-iso/terephthalate)â^'Perfluoropolyether Block Copolymers. Macromolecules, 1998, 31, 7814-7819.	4.8	38
13	An Inkjet Printed CO2 Gas Sensor. Procedia Engineering, 2015, 120, 628-631.	1.2	38
14	Carbon Black based capacitive Fractional Order Element towards a new electronic device. AEU - International Journal of Electronics and Communications, 2018, 84, 307-312.	2.9	38
15	Synthesis of functionalized polyhedral oligomeric silsesquioxane (POSS) macromers by microwave assisted 1,3-dipolar cycloaddition. Tetrahedron, 2005, 61, 7986-7993.	1.9	35
16	The isothermal degradation of some polyetherketones: a comparative kinetic study between long-term and short-term experiments. Polymer Degradation and Stability, 2002, 75, 465-471.	5.8	34
17	Influence of montmorillonite nano-dispersion on polystyrene photo-oxidation. Polymer Degradation and Stability, 2009, 94, 369-374.	5.8	34
18	Kinetic study of the thermal degradation of PS/MMT nanocomposites preparedwith imidazolium surfactants, Journal of Thermal Analysis and Calorimetry, 2008, 91, 681-686.	3.6	33

#	Article	IF	CITATIONS
19	Performance Characterization of a Biodegradable Deformation Sensor Based on Bacterial Cellulose. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 2561-2569.	4.7	33
20	Kinetics of the isothermal degradation of model polymers containing ether, ketone and sulfone groups. Polymer Degradation and Stability, 2005, 87, 271-278.	5.8	32
21	Advantages of Surfaceâ€Initiated ATRP (Slâ€ATRP) for the Functionalization of Electrospun Materials. Macromolecular Rapid Communications, 2013, 34, 51-56.	3.9	32
22	Thermal stability of a novel poly(ether ether Ketone Ketone) (PK99). Polymer Engineering and Science, 1996, 36, 1782-1788.	3.1	30
23	New aromatic polyamide materials containing sulfone, ether and ketone linkages. Polymer, 1996, 37, 2877-2881.	3.8	28
24	Deposition of Plasmaâ€Polymerized Polyacrylic Acid Coatings by a Nonâ€Equilibrium Atmospheric Pressure Nanopulsed Plasma Jet. Plasma Processes and Polymers, 2016, 13, 375-386.	3.0	27
25	Coâ€Đeposition of Plasmaâ€₽olymerized Polyacrylic Acid and Silver Nanoparticles for the Production of Nanocomposite Coatings Using a Nonâ€Equilibrium Atmospheric Pressure Plasma Jet. Plasma Processes and Polymers, 2016, 13, 623-632.	3.0	27
26	Synthesis and characterisation of new polyamides containing 6,6′-oxy or 6,6′-carbonyldiquinoline units. Polymer, 2001, 42, 3323-3332.	3.8	26
27	Evaluation of the influence of various (ether, ketone and sulfone) groups on the apparent activation energy values of polymer degradation. Polymer Degradation and Stability, 2003, 80, 333-338.	5.8	26
28	Natural Ageing of Automotive Polymer Components: Characterisation of New and Used Poly(propylene) based Car Bumpers. Macromolecular Materials and Engineering, 2002, 287, 404.	3.6	25
29	Fluorinated vinyl ethers as new surface agents in the photocationic polymerization of vinyl ether resins. Journal of Polymer Science Part A, 2003, 41, 2890-2897.	2.3	25
30	Reactive microspheres as active fillers for epoxy resins. Journal of Applied Polymer Science, 2004, 93, 2031-2044.	2.6	25
31	UV light-induced grafting of fluorinated monomer onto cellulose sheets. Cellulose, 2011, 18, 117-126.	4.9	25
32	Determination of degradation apparent activation energy values of polymers. Magyar Apróvad Közlemények, 2002, 70, 63-73.	1.4	24
33	Study of the organic–inorganic phase interactions in polyester–titania hybrids. Polymer, 2008, 49, 5215-5224.	3.8	23
34	Water resistance improvement of filter paper by a UV-grafting modification with a fluoromonomer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418, 52-59.	4.7	23
35	A new class of ionic electroactive polymers based on green synthesis. Sensors and Actuators A: Physical, 2016, 249, 32-44.	4.1	23
36	Realization and characterization of carbon black based fractional order element. Microelectronics Journal, 2018, 82, 22-28.	2.0	23

#	Article	IF	CITATIONS
37	Surface investigation by ESCA of poly(ethylene terephthalate)-perfluoro polyether block copolymers. Macromolecules, 1990, 23, 348-350.	4.8	22
38	A Kinetic Study of the Thermal and Oxidative Degradations of a New Poly(arylene)ether Copolymer. Magyar Apróvad Közlemények, 2001, 65, 373-380.	1.4	22
39	Surface properties and adhesion of maleinized polyethylene films. Journal of Materials Science, 1998, 33, 1461-1464.	3.7	21
40	Tridimensional ionic polymer metal composites: optimization of the manufacturing techniques. Smart Materials and Structures, 2010, 19, 055002.	3.5	21
41	Properties of films obtained by UV-curing 4,4'-hexafluoroisopropylidenediphenoldihydroxyethylether diacrylate and its mixtures with the hydrogenated homologue. Journal of Applied Polymer Science, 1997, 63, 979-983.	2.6	20
42	A study on chemical modifications, mechanical properties and surface photo-oxidation of films of polystyrene (PS) stabilised by hindered amines (HAS). Polymer Testing, 2004, 23, 779-789.	4.8	20
43	Surface modification of polyethylene for improving the adhesion of a highly fluorinated UV-cured coating. European Polymer Journal, 2007, 43, 3787-3794.	5.4	20
44	A study on IP ² C actuators using ethylene glycol or EmI-Tf as solvent. Smart Materials and Structures, 2011, 20, 045014.	3.5	20
45	An investigation of the structure–property relationships in ionic polymer polymer composites (IP ² Cs) manufactured by polymerization <i>in situ</i> of PEDOT/PSS on Nafion [®] 117. Smart Materials and Structures, 2014, 23, 035018.	3.5	19
46	Realization of green fractional order devices by using bacterial cellulose. AEU - International Journal of Electronics and Communications, 2019, 112, 152927.	2.9	19
47	The surface photo-oxidation of polystyrene: Part l—The application of ToF-SIMS to monitor changes in polymer chain length. Polymer Degradation and Stability, 1992, 38, 147-154.	5.8	18
48	Synthesis and characterization of novel poly(arylene ether)s containing 1,3,4-oxadiazole units. Macromolecular Rapid Communications, 1999, 20, 405-409.	3.9	18
49	Plasma Processing of Electrospun Liâ€ l on Battery Separators to Improve Electrolyte Uptake. Plasma Processes and Polymers, 2016, 13, 124-133.	3.0	18
50	Green Inertial Sensors based on Bacterial Cellulose. , 2019, , .		18
51	Synthesis and characterization of new poly(arylene)ethers containing heterocyclic units—I. European Polymer Journal, 1995, 31, 35-38.	5.4	16
52	Thermal behavior of some polyarylene ethers: A comparative study of the kinetics of degradation. Macromolecular Chemistry and Physics, 1997, 198, 1437-1454.	2.2	16
53	An Eco-Friendly Disposable Plasmonic Sensor Based on Bacterial Cellulose and Gold. Sensors, 2019, 19, 4894.	3.8	16
54	Synthesis and characterization of new poly(arylene ether)s based on dihydroxynaphthalene isomers. Polymer, 1998, 39, 3199-3203.	3.8	15

#	Article	IF	CITATIONS
55	Kinetic study of the thermal degradation of some poly(arylenether)s containing naphthalene units. Polymer, 2000, 41, 959-964.	3.8	15
56	A vortex-shedding flowmeter based on IPMCs. Smart Materials and Structures, 2016, 25, 015011.	3.5	14
57	A preliminary investigation of the surface photo-oxidation of copolymers of styrene and 2-(2-hydroxy-3-vinyl-5-methylphenyl)-benzotriazole. Polymer Degradation and Stability, 1986, 15, 161-172.	5.8	13
58	Kinetic study of the thermal and oxidative degradations of poly(arylenether)s containing quinoline units. Polymer, 1999, 40, 2719-2726.	3.8	13
59	Direct Printing of a Multi-Layer Sensor on Pet Substrate for CO2 Detection. Energies, 2019, 12, 557.	3.1	13
60	Surface characterisation of collagen-based bioartificial polymeric materials. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 917-924.	3.5	12
61	Ultrathin perfluoropolyether coatings for silicon wafers: a XPS study. Progress in Organic Coatings, 2015, 78, 480-487.	3.9	12
62	Functionalisable Epoxy-rich Electrospun Fibres Based on Renewable Terpene for Multi-Purpose Applications. Polymers, 2021, 13, 1804.	4.5	12
63	Thermal decomposition processes in polyhydrazides and polyoxamides investigated by mass spectrometry. Polymer, 1987, 28, 139-146.	3.8	11
64	Synthesis and characterization of new quinoline monomers. Journal of Heterocyclic Chemistry, 1989, 26, 929-931.	2.6	11
65	"Paperâ€Based Sensor for Deformation Measurements. , 2019, , .		11
66	Synthesis and characterization of new poly(arylene ether)s containing heterocyclic units. II Journal of Polymer Science Part A, 1995, 33, 843-847.	2.3	10
67	Synthesis and properties of new poly(ether sulfone)amides. Journal of Polymer Science Part A, 1996, 34, 1305-1310.	2.3	10
68	High resolution XPS of recycled polyethylene. Polymer Degradation and Stability, 1996, 54, 85-88.	5.8	10
69	Dehydro-thermally cross-linked collagen-poly(vinyl alcohol) blends: mechanical, biological and surface properties. Journal of Materials Science: Materials in Medicine, 1996, 7, 297-300.	3.6	10
70	Surface properties of cationic ultraviolet-curable coatings containing a siloxane structure. Journal of Applied Polymer Science, 2004, 93, 584-589.	2.6	10
71	Properties of Polystyrene Clay Nanocomposites Prepared Using Two New Imidazolium Surfactants. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	10

A Bacterial Cellulose Based Mass Sensor., 2019,,.

#	Article	IF	CITATIONS
73	Synthesis of 2-(2-hydroxyphenyl)-2H-benzotriazole monomers and studies of the surface photostabilization of the related copolymers. Macromolecules, 1990, 23, 2662-2666.	4.8	9
74	Surface photostabilization of polystyrene by Tinuvin 1577. Journal of Applied Polymer Science, 1998, 69, 1251-1256.	2.6	9
75	Synthesis and characterization of new polyamides containing 6,6′-methylenediquinoline units. Polymer, 1998, 39, 4949-4954.	3.8	9
76	Effects of the structure on the properties of new poly(arylene ether sulfone)s containing naphthalene units. European Polymer Journal, 2003, 39, 2203-2208.	5.4	9
77	The surface photo-oxidation of polystyrene. Part II: The application of ToF-SIMS to monitor changes in the surface chemistry of neat polystyrene films. Surface and Interface Analysis, 1992, 18, 667-672.	1.8	8
78	X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of UV-exposed polystyrene. Macromolecular Chemistry and Physics, 1995, 196, 3695-3705.	2.2	8
79	Surface and barrier properties of hybrid nanocomposites containing silica and PEO segments. Journal of Applied Polymer Science, 2007, 103, 4107-4115.	2.6	8
80	Ca ₃ (PO ₄) ₂ â€incorporated poly(ethylene oxide)â€based nanocomposite electrolytes for lithium batteries. Part II. Interfacial properties investigated by XPS and a.c. impedance studies. Journal of Applied Polymer Science, 2012, 124, 3255-3263.	2.6	8
81	Electrospun Fibers Containing Bioâ€Based Ricinoleic Acid: Effect of Amount and Distribution of Ricinoleic Acid Unit on Antibacterial Properties. Macromolecular Materials and Engineering, 2015, 300, 1085-1095.	3.6	8
82	The evolution of ionic polymer metal composites towards greener transducers. IEEE Instrumentation and Measurement Magazine, 2019, 22, 30-35.	1.6	8
83	Green Energy Harvester from Vibrations Based on Bacterial Cellulose. Sensors, 2020, 20, 136.	3.8	8
84	An ESCA investigation of the surface photooxidation of Styrene/2-(2-Hydroxy-3-Vinyl-5-Methylphenyl)-Benzotriazole copolymers. Polymer Degradation and Stability, 1987, 17, 185-190.	5.8	7
85	Surface photo-stabilization of styrene/2-(2-hydroxy-5-vinyl phenyl)-2H-benzotriazole copolymers by the use of hindered amine light stabilizer (HALS). Polymer Degradation and Stability, 1991, 32, 71-77.	5.8	7
86	Leucopur EGM influence on the surface photooxidation of poly(ethylene terephthalate) and poly(vinyl) Tj ETQo	0 0 9.ggBT	/Overlock 10
87	A Generating All-Polymeric Touching Sensing System. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 4545-4554.	4.7	7
88	Synthesis and characterization of new polyamides and copolyamides containing 6,6'-sulfonediquinoline units. Polymer Bulletin, 1999, 42, 519-526.	3.3	6

89	Thermochemical properties of copper forms of zeolite ZSM5 containing dimethylethylenediamine. Thermochimica Acta, 2007, 452, 13-19.	2.7	6	

90<scp>PMMA</scp>/oâ€<scp>MMT</scp> nanocomposites obtained using thermally stable surfactants.2.66Journal of Applied Polymer Science, 2015, 132, .

#	Article	IF	CITATIONS
91	Ionic polymer-metal composites (IPMCs) and ionic polymer-polymer composites (IP ² Cs): Effects of electrode on mechanical, thermal and electromechanical behaviour. AIMS Materials Science, 2017, 4, 1062-1077.	1.4	6
92	Aspects of the surface photo-oxidation of poly 2-(2-hydroxy-3-vinyl-5-methylphenyl)-benzotriazole. Polymer Degradation and Stability, 1989, 23, 19-24.	5.8	5
93	X-ray photoelectron spectroscopic study of poly[4,4′-isopropylidenebis(1,4-phenyleneoxyethylene) diacrylate] photocured in the presence of a fluorine containing monomer. Macromolecular Rapid Communications, 1995, 16, 807-812.	3.9	5
94	Thermochemical properties of composites of synthetic zeolite ZSM5 and silver iodide. Journal of Thermal Analysis and Calorimetry, 2006, 84, 721-726.	3.6	5
95	Peptide Modified Electrospun Glycopolymer Fibers. Macromolecular Bioscience, 2017, 17, 1600327.	4.1	5
96	Investigation on the Role of Ionic Liquids in the Output Signal Produced by Bacterial Cellulose-Based Mechanoelectrical Transducers. Sensors, 2021, 21, 1295.	3.8	5
97	Towards Environmentally Friendly Accelerometers Based on Bacterial Cellulose. Applied Sciences (Switzerland), 2021, 11, 7903.	2.5	5
98	Geometrical and thermal influences on a bacterial cellulose based sensing element for acceleration measurements. Acta IMEKO (2012), 2020, 9, 151.	0.7	5
99	Synthesis and Properties of Aromatic Poly(Ether Sulfone)s and Poly(Etherketone)s Containing Naphthalene or Quinoline Units, and Methyl-Substituted Biphenyl-4,4′-Diols. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 1947-1955.	2.2	4
100	Synthesis and characterization of new poly(arylene ether 1,3,4-oxadiazole)s based on dihydroxynaphthalene isomers. Polymer Bulletin, 2000, 45, 345-350.	3.3	4
101	Green LSPR Sensors Based on Thin Bacterial Cellulose Waveguides for Disposable Biosensor Implementation. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	4
102	ESCA surface study of polystyrene photodegradation accelerated by 2-(2-methoxy-5-methylphenyl)-2H-benzotriazole. Macromolecular Rapid Communications, 1995, 16, 799-806.	3.9	3
103	The preparation by a solid-solid interaction route of aromatic polyamide materials containing sulphone, ether and ketone linkages. Journal of Theoretical Biology, 1997, 50, 633-646.	1.7	3
104	A Green Deformation Sensor Based on Bacterial Cellulose and Bio-Derived Ionic Liquids. , 2021, , .		3
105	Synthesis and Characterization of an Epoxy Ended Poly(Ether Sulphone)/Poly(Ether Ether Sulfphone) Copolymer. Journal of Polymer Engineering, 2002, 22, .	1.4	2
106	Green Fractional Order Elements Based on Bacterial Cellulose and Ionic Liquids. , 2020, , .		2
107	Surface Properties of Networks Containing Fluorinated Acrylic Monomers. Polymers for Advanced Technologies, 1996, 7, 403-408.	3.2	2
108	Paper preservation by poly(cyclohexene oxide) deposition - an XPS study. Macromolecular Rapid Communications, 1998, 19, 553-556.	3.9	1

#	Article	IF	CITATIONS
109	Synthesis and Characterization of New Copoly(arylene ether)s Containing Naphthalene or Naphthalene/1,3,4-Oxadiazole Units. Polymer Bulletin, 2003, 51, 31-38.	3.3	1
110	Study of an ionic polymer-metal composite based flowmeter. , 2016, , .		1
111	Geometrical Analysis of a Bacterial Cellulose-Based Sensing Element. , 2019, , .		1
112	Low Cost Inkjet Printed Sensors: From Physical to Chemical Sensors. Lecture Notes in Electrical Engineering, 2019, , 297-308.	0.4	1
113	An LSPR Sensor based on a thin slab waveguide of bacterial cellulose. , 2020, , .		1
114	Extrinsic plasmonic optical fiber sensors based on POFs and bacterial cellulose slab waveguides. , 2019, , .		1
115	Paper preservation by poly(cyclohexene oxide) deposition – an XPS study. Macromolecular Rapid Communications, 1998, 19, 553-556.	3.9	1
116	Thermal, Mechanical and Electrical Investigation of Elastomer-Carbon Black Nanocomposite Piezoresistivity. Lecture Notes in Electrical Engineering, 2019, , 237-250.	0.4	0
117	Green Nonlinear Energy Harvester from Vibrations based on Bacterial Cellulose. , 2020, , .		0
118	Conditioning of Bacterial Cellulose-based Motion Sensors. , 2021, , .		0
119	Investigation of Bacterial Cellulose-based Fractional Order Element behaviour. , 2021, , .		0
120	"Green―Sensors Based on Bacterial Cellulose. Lecture Notes in Electrical Engineering, 2020, , 301-304.	0.4	0