
Antonio Molina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8683120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational prediction method to decipher receptor–glycoligand interactions in plant immunity. Plant Journal, 2021, 105, 1710-1726.	5.7	14
2	Cell wallâ€derived mixedâ€linked βâ€1,3/1,4â€glucans trigger immune responses and disease resistance in plants Plant Journal, 2021, 106, 601-615.	^{5.} 5.7	69
3	<i>Arabidopsis</i> cell wall composition determines disease resistance specificity and fitness. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	88
4	The role of <scp>CYP</scp> 71A12 monooxygenase in pathogenâ€ŧriggered tryptophan metabolism and Arabidopsis immunity. New Phytologist, 2020, 225, 400-412.	7.3	51
5	YODA Kinase Controls a Novel Immune Pathway of Tomato Conferring Enhanced Disease Resistance to the Bacterium Pseudomonas syringae. Frontiers in Plant Science, 2020, 11, 584471.	3.6	9
6	Differential Expression of Fungal Genes Determines the Lifestyle of Plectosphaerella Strains During Arabidopsis thaliana Colonization. Molecular Plant-Microbe Interactions, 2020, 33, 1299-1314.	2.6	9
7	Arabinoxylan-Oligosaccharides Act as Damage Associated Molecular Patterns in Plants Regulating Disease Resistance. Frontiers in Plant Science, 2020, 11, 1210.	3.6	49
8	<i>Arabidopsis</i> Response Regulator 6 (ARR6) Modulates Plant Cell-Wall Composition and Disease Resistance. Molecular Plant-Microbe Interactions, 2020, 33, 767-780.	2.6	46
9	Moonlighting Function of Phytochelatin Synthase1 in Extracellular Defense against Fungal Pathogens. Plant Physiology, 2020, 182, 1920-1932.	4.8	26
10	Functional characterization of genes mediating cell wall metabolism and responses to plant cell wall integrity impairment. BMC Plant Biology, 2019, 19, 320.	3.6	20
11	Mitogen-Activated Protein Kinase Phosphatase 1 (MKP1) Negatively Regulates the Production of Reactive Oxygen Species During <i>Arabidopsis</i> Immune Responses. Molecular Plant-Microbe Interactions, 2019, 32, 464-478.	2.6	27
12	Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector― and PAMPâ€ŧriggered immunity in plants. New Phytologist, 2019, 221, 2160-2175.	7.3	102
13	YODA MAP3K kinase regulates plant immune responses conferring broadâ€spectrum disease resistance. New Phytologist, 2018, 218, 661-680.	7.3	54
14	Plant cell wallâ€mediated immunity: cell wall changes trigger disease resistance responses. Plant Journal, 2018, 93, 614-636.	5.7	398
15	Nonâ€branched βâ€1,3â€glucan oligosaccharides trigger immune responses in Arabidopsis. Plant Journal, 2018, 93, 34-49.	5.7	112
16	Glutathione Transferase U13 Functions in Pathogen-Triggered Glucosinolate Metabolism. Plant Physiology, 2018, 176, 538-551.	4.8	69
17	Characterization of Plant Cell Wall Damage-Associated Molecular Patterns Regulating Immune Responses. Methods in Molecular Biology, 2017, 1578, 13-23.	0.9	20
18	A computational approach for inferring the cell wall properties that govern guard cell dynamics. Plant Journal, 2017, 92, 5-18.	5.7	62

#	Article	IF	CITATIONS
19	Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the βâ€subunit of the heterotrimeric Gâ€protein. Plant Journal, 2017, 92, 386-399.	5.7	68
20	The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genetics, 2017, 13, e1006832.	3.5	187
21	ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. Frontiers in Plant Science, 2016, 7, 897.	3.6	99
22	Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily. Angewandte Chemie, 2016, 128, 8062-8065.	2.0	7
23	Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily. Angewandte Chemie - International Edition, 2016, 55, 7930-7933.	13.8	45
24	Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. Molecular Plant, 2016, 9, 682-695.	8.3	149
25	The Arabidopsis NADPH oxidases <i>RbohD</i> and <i>RbohF</i> display differential expression patterns and contributions during plant immunity. Journal of Experimental Botany, 2016, 67, 1663-1676.	4.8	161
26	Expression of fungal acetyl xylan esterase in <i>Arabidopsis thaliana</i> improves saccharification of stem lignocellulose. Plant Biotechnology Journal, 2016, 14, 387-397.	8.3	72
27	Development of a <i>Fusarium oxysporum</i> f. sp. <i>melonis</i> functional <scp>GFP</scp> fluorescence tool to assist melon resistance breeding programmes. Plant Pathology, 2015, 64, 1349-1357.	2.4	2
28	Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways. Plant Physiology, 2015, 168, 814-827.	4.8	71
29	The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 2014, 5, 358.	3.6	455
30	Plant Antimicrobial Peptides Snakinâ€1 and Snakinâ€2: Chemical Synthesis and Insights into the Disulfide Connectivity. Chemistry - A European Journal, 2014, 20, 5102-5110.	3.3	37
31	Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus <i><scp>P</scp>lectosphaerella cucumerina</i> in <i><scp>A</scp>rabidopsis thaliana</i> . Molecular Plant Pathology, 2013, 14, 44-57.	4.2	25
32	Arabidopsis <i>wat1</i> (<i>walls are thin1</i>)â€mediated resistance to the bacterial vascular pathogen, <i>Ralstonia solanacearum</i> , is accompanied by crossâ€regulation of salicylic acid and tryptophan metabolism. Plant Journal, 2013, 73, 225-239.	5.7	154
33	Functional Interplay Between <i>Arabidopsis</i> NADPH Oxidases and Heterotrimeric G Protein. Molecular Plant-Microbe Interactions, 2013, 26, 686-694.	2.6	110
34	Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 2013, 4, 155.	3.6	505
35	Dissecting Arabidopsis Gβ Signal Transduction on the Protein Surface Â. Plant Physiology, 2012, 159, 975-983.	4.8	18
36	Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus <i>Plectosphaerella cucumerina</i> Â Â. Plant Physiology, 2012, 160, 2109-2124.	4.8	132

#	Article	IF	CITATIONS
37	Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi. Molecular Plant, 2012, 5, 98-114.	8.3	141
38	Arabidopsis Gâ€protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Molecular Systems Biology, 2011, 7, 532.	7.2	191
39	Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant Journal, 2011, 66, 818-830.	5.7	190
40	Plant biotechnology. Current Opinion in Biotechnology, 2010, 21, 182-184.	6.6	1
41	Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant Journal, 2010, 63, no-no.	5.7	191
42	G Proteins and Plant Innate Immunity. Signaling and Communication in Plants, 2010, , 221-250.	0.7	19
43	The ERECTA Receptor-Like Kinase Regulates Cell Wall–Mediated Resistance to Pathogens in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2009, 22, 953-963.	2.6	100
44	Leishmania donovani: Thionins, plant antimicrobial peptides with leishmanicidal activity. Experimental Parasitology, 2009, 122, 247-249.	1.2	44
45	Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO Journal, 2009, 28, 3428-3438.	7.8	267
46	A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense. Science, 2009, 323, 101-106.	12.6	927
47	Arabidopsis defense response against Fusarium oxysporum. Trends in Plant Science, 2008, 13, 145-150.	8.8	171
48	Repression of the Auxin Response Pathway Increases Arabidopsis Susceptibility to Necrotrophic Fungi. Molecular Plant, 2008, 1, 496-509.	8.3	208
49	Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance. Plant Cell, 2007, 19, 890-903.	6.6	380
50	A Minimalist Design Approach to Antimicrobial Agents Based on a Thionin Template. Journal of Medicinal Chemistry, 2006, 49, 448-451.	6.4	25
51	A Minimalist Approach to Antimicrobial Proteins with Thionin as a Template. , 2006, , 248-251.		0
52	Arabidopsis PEN3/PDR8, an ATP Binding Cassette Transporter, Contributes to Nonhost Resistance to Inappropriate Pathogens That Enter by Direct Penetration. Plant Cell, 2006, 18, 731-746.	6.6	598
53	ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Journal, 2005, 43, 165-180.	5.7	303
54	A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region. Plant Molecular Biology, 2005, 58, 269-282.	3.9	79

#	Article	IF	CITATIONS
55	Structural Dissection of a Highly Knotted Peptide Reveals Minimal Motif with Antimicrobial Activity. Journal of Biological Chemistry, 2005, 280, 1661-1668.	3.4	32
56	Pre- and Postinvasion Defenses Both Contribute to Nonhost Resistance in Arabidopsis. Science, 2005, 310, 1180-1183.	12.6	753
57	Ethylene Response Factor 1 Mediates Arabidopsis Resistance to the Soilborne Fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2004, 17, 763-770.	2.6	268
58	Synthetic and structural studies onPyrularia puberathionin: a single-residue mutation enhances activity against Gram-negative bacteria. FEBS Letters, 2003, 536, 215-219.	2.8	43
59	Snakin-2, an Antimicrobial Peptide from Potato Whose Gene Is Locally Induced by Wounding and Responds to Pathogen Infection. Plant Physiology, 2002, 128, 951-961.	4.8	289
60	Constitutive expression of ETHYLENE-RESPONSE-FACTOR1inArabidopsisconfers resistance to several necrotrophic fungi. Plant Journal, 2002, 29, 23-32.	5.7	689
61	Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Letters, 2001, 498, 219-222.	2.8	90
62	Purification and Characterization of a Mannan-Binding Lectin Specifically Expressed in Corms of Saffron Plant (CrocussativusL.). Journal of Agricultural and Food Chemistry, 2000, 48, 457-463.	5.2	22
63	Expression of Uroporphyrinogen Decarboxylase or Coproporphyrinogen Oxidase Antisense RNA in Tobacco Induces Pathogen Defense Responses Conferring Increased Resistance to Tobacco Mosaic Virus. Journal of Biological Chemistry, 1999, 274, 4231-4238.	3.4	94
64	Inhibition of protoporphyrinogen oxidase expression inArabidopsiscauses a lesionâ€mimic phenotype that induces systemic acquired resistance. Plant Journal, 1999, 17, 667-678.	5.7	123
65	Snakin-1, a Peptide from Potato That Is Active Against Plant Pathogens. Molecular Plant-Microbe Interactions, 1999, 12, 16-23.	2.6	281
66	Wheat Genes Encoding Two Types of PR-1 Proteins Are Pathogen Inducible, but Do Not Respond to Activators of Systemic Acquired Resistance. Molecular Plant-Microbe Interactions, 1999, 12, 53-58.	2.6	117
67	Plant defense peptides. , 1998, 47, 479-491.		448
68	Interaction of wheat αâ€ŧhionin with large unilamellar vesicles. Protein Science, 1998, 7, 2567-2577.	7.6	23
69	Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Letters, 1998, 435, 159-162.	2.8	141
70	Impaired Fungicide Activity in Plants Blocked in Disease Resistance Signal Transduction. Plant Cell, 1998, 10, 1903-1914.	6.6	88
71	Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Letters, 1997, 410, 338-342.	2.8	74
72	Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Molecular Biology, 1997, 33, 803-810.	3.9	62

#	Article	IF	CITATIONS
73	Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant Journal, 1997, 12, 669-675.	5.7	196
74	Engineering plants against pathogens: A general strategy. Field Crops Research, 1996, 45, 79-84.	5.1	5
75	Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Molecular Genetics and Genomics, 1996, 252, 162-168.	2.4	73
76	Systemic Acquired Resistance. Plant Cell, 1996, 8, 1809.	6.6	583
77	Systemic Acquired Resistance Plant Cell, 1996, 8, 1809-1819.	6.6	1,536
78	The defensive role of nonspecific lipid-transfer proteins in plants. Trends in Microbiology, 1995, 3, 72-74.	7.7	333
79	Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant Journal, 1993, 4, 983-991.	5.7	174
80	Purification, characterization, and cell wall localization of an α-fucosidase that inactivates a xyloglucan oligosaccharin. Plant Journal, 1993, 3, 415-426.	5.7	88
81	Expression of the αâ€ŧhionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant Journal, 1993, 3, 457-462.	5.7	156
82	Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Letters, 1993, 316, 119-122.	2.8	347
83	Inhibition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Science, 1993, 92,	3.6	79