
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682870/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sample Processing for Metaproteomic Analysis of Human Gut Microbiota. Methods in Molecular Biology, 2022, 2420, 53-61.	0.4	1
2	Genotypic, proteomic, and phenotypic approaches to decipher the response to caspofungin and calcineurin inhibitors in clinical isolates of echinocandin-resistant <i>Candida glabrata</i> . Journal of Antimicrobial Chemotherapy, 2022, 77, 585-597.	1.3	9
3	Candida albicans Hyphal Extracellular Vesicles Are Different from Yeast Ones, Carrying an Active Proteasome Complex and Showing a Different Role in Host Immune Response. Microbiology Spectrum, 2022, 10, .	1.2	13
4	Mesenchymal Stem Cell-Derived Extracellular Isolation and Their Protein Cargo Characterization. Methods in Molecular Biology, 2021, 2259, 3-12.	0.4	5
5	A wide-ranging Pseudomonas aeruginosa PeptideAtlas build: A useful proteomic resource for a versatile pathogen. Journal of Proteomics, 2021, 239, 104192.	1.2	7
6	Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis. Journal of Fungi (Basel,) Tj ETQq0 0	0 ng:®T /Ov	renlock 10 Tf
7	Distinct Human Gut Microbial Taxonomic Signatures Uncovered With Different Sample Processing and Microbial Cell Disruption Methods for Metaproteomic Analysis. Frontiers in Microbiology, 2021, 12, 618566.	1.5	12
8	Extending the Proteomic Characterization of Candida albicans Exposed to Stress and Apoptotic Inducers through Data-Independent Acquisition Mass Spectrometry. MSystems, 2021, 6, e0094621.	1.7	6
9	Tell me what type of extracellular vesicles you secrete, and I will tell you who you are: yeast or hypha. Access Microbiology, 2021, 3, .	0.2	0
10	Multiomics Substrates of Resistance to Emerging Pathogens? Transcriptome and Proteome Profile of a Vancomycin-ResistantEnterococcus faecalisClinical Strain. OMICS A Journal of Integrative Biology, 2020, 24, 81-95.	1.0	3
11	Vultures from different trophic guilds show distinct oral pathogenic yeast signatures and co-occurrence networks. Science of the Total Environment, 2020, 723, 138166.	3.9	11
12	Trk1-mediated potassium uptake contributes to cell-surface properties and virulence of Candida glabrata. Scientific Reports, 2019, 9, 7529.	1.6	11
13	Multiomics Assessment of Gene Expression in a Clinical Strain of CTX-M-15-Producing ST131 Escherichia coli. Frontiers in Microbiology, 2019, 10, 831.	1.5	6
14	Enrichment of ATP Binding Proteins Unveils Proteomic Alterations in Human Macrophage Cell Death, Inflammatory Response, and Protein Synthesis after Interaction with <i>Candida albicans</i> . Journal of Proteome Research, 2019, 18, 2139-2159.	1.8	3
15	The external face of Candida albicans : A proteomic view of the cell surface and the extracellular environment. Journal of Proteomics, 2018, 180, 70-79.	1.2	44
16	A Perspective on Proteomics of Infectious Diseases. Proteomics - Clinical Applications, 2018, 12, e1700139.	0.8	7
17	Diagnosis of Invasive Candidiasis: From Gold Standard Methods to Promising Leading-edge Technologies. Current Topics in Medicinal Chemistry, 2018, 18, 1375-1392.	1.0	27
18	The development of a new parameter for tracking post-transcriptional regulation allows the detailed map of the Pseudomonas aeruginosa Crc regulon. Scientific Reports, 2018, 8, 16793.	1.6	30

#	Article	IF	CITATIONS
19	SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast. GigaScience, 2018, 7, .	3.3	24
20	Unraveling Gardnerella vaginalis Surface Proteins Using Cell Shaving Proteomics. Frontiers in Microbiology, 2018, 9, 975.	1.5	7
21	Identification of the Missing Protein Hyaluronan Synthase 1 in Human Mesenchymal Stem Cells Derived from Adipose Tissue or Umbilical Cord. Journal of Proteome Research, 2018, 17, 4325-4328.	1.8	6
22	Oral mycoses in avian scavengers exposed to antibiotics from livestock farming. Science of the Total Environment, 2017, 605-606, 139-146.	3.9	42
23	A multicentric study to evaluate the use of relative retention times in targeted proteomics. Journal of Proteomics, 2017, 152, 138-149.	1.2	9
24	<i>Candida albicans</i> Modifies the Protein Composition and Size Distribution of THP-1 Macrophage-Derived Extracellular Vesicles. Journal of Proteome Research, 2017, 16, 87-105.	1.8	28
25	Serum Antibody Profile during Colonization of the Mouse Gut by <i>Candida albicans</i> : Relevance for Protection during Systemic Infection. Journal of Proteome Research, 2017, 16, 335-345.	1.8	26
26	The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host–Cell Interaction. Frontiers in Microbiology, 2016, 7, 64.	1.5	29
27	The EuPA2015 Congress. Proteomics: Back to the Future. EuPA Open Proteomics, 2016, 11, 36.	2.5	0
28	Apoptosis of Candida albicans during the Interaction with Murine Macrophages: Proteomics and Cell-Death Marker Monitoring. Journal of Proteome Research, 2016, 15, 1418-1434.	1.8	17
29	The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies. Future Medicinal Chemistry, 2016, 8, 1503-1520.	1.1	9
30	EuPA News from the EuPA Conference and Communication Committee (CCC). EuPA Open Proteomics, 2016, 11, 30.	2.5	0
31	Top-down characterization data on the speciation of the Candida albicans immunome in candidemia. Data in Brief, 2016, 6, 257-261.	0.5	3
32	A comprehensive Candida albicans PeptideAtlas build enables deep proteome coverage. Journal of Proteomics, 2016, 131, 122-130.	1.2	8
33	Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia. Journal of Proteomics, 2016, 134, 144-162.	1.2	33
34	Proteopathogen2, a database and web tool to store and display proteomics identification results in the mzldentML standard. EuPA Open Proteomics, 2015, 8, 22-27.	2.5	4
35	Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye. BMC Microbiology, 2015, 15, 271.	1.3	14
36	Juan Pablo Albar (1953-2014). Proteomics, 2015, 15, 625-626.	1.3	1

#	Article	IF	CITATIONS
37	Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface. Frontiers in Microbiology, 2015, 6, 1343.	1.5	43
38	Comparative proteomic study of Edwardsiella tarda strains with different degrees of virulence. Journal of Proteomics, 2015, 127, 310-320.	1.2	18
39	Proteomics Unravels Extracellular Vesicles as Carriers of Classical Cytoplasmic Proteins in <i>Candida albicans</i> . Journal of Proteome Research, 2015, 14, 142-153.	1.8	117
40	The Spanish biology/disease initiative within the human proteome project: Application to rheumatic diseases. Journal of Proteomics, 2015, 127, 406-413.	1.2	2
41	Quantitative proteomics unravels that the post-transcriptional regulator Crc modulates the generation of vesicles and secreted virulence determinants of Pseudomonas aeruginosa. Journal of Proteomics, 2015, 127, 352-364.	1.2	26
42	Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host–pathogen interaction. Journal of Proteomics, 2015, 127, 340-351.	1.2	68
43	The proteome quest to understand biology and disease (HUPO 2014). Journal of Proteomics, 2015, 127, 223-224.	1.2	0
44	Inter-laboratory evaluation of instrument platforms and experimental workflows for quantitative accuracy and reproducibility assessment. EuPA Open Proteomics, 2015, 8, 6-15.	2.5	32
45	In Vitro Transcription/Translation System: A Versatile Tool in the Search for Missing Proteins. Journal of Proteome Research, 2015, 14, 3441-3451.	1.8	11
46	Global Proteomic Profiling of the Secretome of <i>Candida albicans ecm33</i> Cell Wall Mutant Reveals the Involvement of Ecm33 in Sap2 Secretion. Journal of Proteome Research, 2015, 14, 4270-4281.	1.8	21
47	Quantitative proteomics unravels that the post-transcriptional regulator Crc modulates the generation of vesicles and secreted virulence determinants of Pseudomonas aeruginosa. Data in Brief, 2015, 4, 450-453.	0.5	17
48	Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model. Journal of Proteomics, 2015, 112, 14-26.	1.2	5
49	Methodologies to generate, extract, purify and fractionate yeast ECM for analytical use in proteomics and glycomics. BMC Microbiology, 2014, 14, 244.	1.3	11
50	Trends in microbial proteomics. Journal of Proteomics, 2014, 97, 1-2.	1.2	5
51	A Candida albicans PeptideAtlas. Journal of Proteomics, 2014, 97, 62-68.	1.2	21
52	Proteomic characterization of human proinflammatory M1 and antiâ€inflammatory M2 macrophages and their response to <i>Candida albicans</i> . Proteomics, 2014, 14, 1503-1518.	1.3	73
53	General Statistical Framework for Quantitative Proteomics by Stable Isotope Labeling. Journal of Proteome Research, 2014, 13, 1234-1247.	1.8	165
54	Serum Antibody Signature Directed against <i>Candida albicans</i> Hsp90 and Enolase Detects Invasive Candidiasis in Non-Neutropenic Patients. Journal of Proteome Research, 2014, 13, 5165-5184.	1.8	38

#	Article	IF	CITATIONS
55	Surfing Transcriptomic Landscapes. A Step beyond the Annotation of Chromosome 16 Proteome. Journal of Proteome Research, 2014, 13, 158-172.	1.8	26
56	Spanish Human Proteome Project: Dissection of Chromosome 16. Journal of Proteome Research, 2013, 12, 112-122.	1.8	17
57	Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets. Journal of Proteomics, 2013, 78, 522-534.	1.2	31
58	Immunoproteomic analysis of the protective response obtained with subunit and commercial vaccines against GlÃ s er's disease in pigs. Veterinary Immunology and Immunopathology, 2013, 151, 235-247.	0.5	18
59	Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics. Journal of Proteomics, 2013, 91, 106-135.	1.2	36
60	Dual Regulation of the Mitotic Exit Network (MEN) by PP2A-Cdc55 Phosphatase. PLoS Genetics, 2013, 9, e1003966.	1.5	23
61	Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components. Molecular and Cellular Proteomics, 2013, 12, 557-574.	2.5	52
62	Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus. Journal of Proteomics, 2012, 75, 4734-4746.	1.2	21
63	Proteomic analysis of porcine mesenteric lymph-nodes after Salmonella typhimurium infection. Journal of Proteomics, 2012, 75, 4457-4470.	1.2	19
64	Cell surface shaving of <i><scp>C</scp>andida albicans</i> biofilms, hyphae, and yeast form cells. Proteomics, 2012, 12, 2331-2339.	1.3	54
65	Quantitative Proteome and Acidic Subproteome Profiling of <i>Candida albicans</i> Yeast-to-Hypha Transition. Journal of Proteome Research, 2011, 10, 502-517.	1.8	41
66	The transition of the European Proteomics Association into the future. Journal of Proteomics, 2011, 75, 18-22.	1.2	0
67	In vivo virulence of commercial Saccharomyces cerevisiae strains with pathogenicity-associated phenotypical traits. International Journal of Food Microbiology, 2011, 144, 393-399.	2.1	35
68	Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. International Journal of Food Microbiology, 2011, 145, 211-220.	2.1	44
69	Prediction of the Clinical Outcome in Invasive Candidiasis Patients Based on Molecular Fingerprints of Five Anti-Candida Antibodies in Serum. Molecular and Cellular Proteomics, 2011, 10, M110.004010.	2.5	45
70	Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. Journal of Proteomics, 2010, 73, 1183-1195.	1.2	46
71	Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach. Journal of Proteomics, 2010, 73, 1404-1409.	1.2	58
72	<i>Aspergillus</i> RabB ^{Rab5} Integrates Acquisition of Degradative Identity with the Long Distance Movement of Early Endosomes. Molecular Biology of the Cell, 2010, 21, 2756-2769.	0.9	77

#	Article	IF	CITATIONS
73	Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of <i>Candida albicans</i> . Proteomics, 2009, 9, 2230-2252.	1.3	88
74	Proteomics of RAW 264.7 macrophages upon interaction with heatâ€inactivated <i>Candida albicans</i> cells unravel an antiâ€inflammatory response. Proteomics, 2009, 9, 2995-3010.	1.3	24
75	The <i>Pseudomonas putida</i> Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: Evidence from proteomic and genomic analyses. Proteomics, 2009, 9, 2910-2928.	1.3	100
76	The <i>Fusarium oxysporum</i> cell wall proteome under adhesionâ€inducing conditions. Proteomics, 2009, 9, 4755-4769.	1.3	34
77	Analysis of <i>Candida albicans</i> plasma membrane proteome. Proteomics, 2009, 9, 4770-4786.	1.3	63
78	Proteopathogen, a protein database for studying <i>Candida albicans</i> – host interaction. Proteomics, 2009, 9, 4664-4668.	1.3	24
79	<i>Candida albicans</i> actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cellular Microbiology, 2009, 11, 560-589.	1.1	75
80	Identification of the Candida albicans Immunome During Systemic Infection by Mass Spectrometry. Methods in Molecular Biology, 2009, 470, 187-235.	0.4	5
81	Proteomic Profiling of Serologic Response to Candida albicans During Host-Commensal and Host-Pathogen Interactions. Methods in Molecular Biology, 2009, 470, 369-411.	0.4	26
82	Immunoproteomic analysis of the protective response obtained from vaccination with <i>Candida albicans ecm33</i> cell wall mutant in mice. Proteomics, 2008, 8, 2651-2664.	1.3	38
83	Serological proteome analysis to identify systemic candidiasis patients in the intensive care unit: Analytical, diagnostic and prognostic validation of antiâ€ <i>Candida</i> enolase antibodies on quantitative clinical platforms. Proteomics - Clinical Applications, 2008, 2, 596-618.	0.8	24
84	EuPA achieves visibility — An activity report on the first three years. Journal of Proteomics, 2008, 71, 11-18.	1.2	4
85	Cell Wall Fractionation for Yeast and Fungal Proteomics. Methods in Molecular Biology, 2008, 425, 217-239.	0.4	54
86	Collection of Proteins Secreted from Yeast Protoplasts in Active Cell Wall Regeneration. Methods in Molecular Biology, 2008, 425, 241-263.	0.4	15
87	Integrated Proteomics and Genomics Strategies Bring New Insight into Candida albicans Response upon Macrophage Interaction. Molecular and Cellular Proteomics, 2007, 6, 460-478.	2.5	123
88	The NcGRA7gene encodes the immunodominant 17 kDa antigen ofNeospora caninum. Parasitology, 2007, 134, 41-50.	0.7	42
89	Antibodies. , 2007, , 235-256.		0
90	Proteomic analysis reveals metabolic changes during yeast to hypha transition in <i>Yarrowia lipolytica</i> . Journal of Mass Spectrometry, 2007, 42, 1453-1462.	0.7	33

CONCHA GIL

#	Article	lF	CITATIONS
91	Reliability of antibodies to <i>Candida</i> methionine synthase for diagnosis, prognosis and risk stratification in systemic candidiasis: A generic strategy for the prototype development phase of proteomic markers. Proteomics - Clinical Applications, 2007, 1, 1221-1242.	0.8	16
92	Promoting Proteomics Knowledge in Europe. Proteomics, 2007, 7, 90-94.	1.3	4
93	Non-conventional protein secretionin yeast. Trends in Microbiology, 2006, 14, 15-21.	3.5	186
94	Report. Proteomics Education, an Important Challenge for the Scientific Community: Report on the Activities of the EuPA Education Committee. Proteomics, 2006, 6, 77-81.	1.3	4
95	Proteomic analysis of detergent-resistant membranes from Candida albicans. Proteomics, 2006, 6, S74-S81.	1.3	39
96	Genetic and proteomic evidences support the localization of yeast enolase in the cell surface. Proteomics, 2006, 6, S107-S118.	1.3	68
97	Differential protein expression of murine macrophages upon interaction with Candida albicans. Proteomics, 2006, 6, S133-S144.	1.3	24
98	A literature-based similarity metric for biological processes. BMC Bioinformatics, 2006, 7, 363.	1.2	9
99	Proteomics to Study Candida albicans Biology and Pathogenicity. Infectious Disorders - Drug Targets, 2006, 6, 335-341.	0.4	29
100	Transcriptomic and Proteomic Approach for Understanding the Molecular Basis of Adaptation of Saccharomyces cerevisiae to Wine Fermentation. Applied and Environmental Microbiology, 2006, 72, 836-847.	1.4	110
101	Candida albicans Ecm33p Is Important for Normal Cell Wall Architecture and Interactions with Host Cells. Eukaryotic Cell, 2006, 5, 140-147.	3.4	77
102	Decoding Serological Response to Candida Cell Wall Immunome into Novel Diagnostic, Prognostic, and Therapeutic Candidates for Systemic Candidiasis by Proteomic and Bioinformatic Analyses. Molecular and Cellular Proteomics, 2006, 5, 79-96.	2.5	126
103	Candida albicans biology and pathogenicity: insights from proteomics. Methods of Biochemical Analysis, 2006, 49, 285-330.	0.2	8
104	Contributions of Proteomics to Diagnosis, Treatment, and Prevention of Candidiasis. Methods of Biochemical Analysis, 2005, 49, 331-361.	0.2	10
105	Candida albicansBiology and Pathogenicity: Insights from Proteomics. Methods of Biochemical Analysis, 2005, , 285-330.	0.2	17
106	The Importance of the Phagocytes' Innate Response in Resolution of the Infection Induced by a Low Virulent Candida albicans Mutant. Scandinavian Journal of Immunology, 2005, 62, 224-233.	1.3	15
107	PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology (United Kingdom), 2004, 150, 4157-4170.	0.7	89
108	The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans. Microbiology (United Kingdom), 2004, 150, 3341-3354.	0.7	107

#	Article	IF	CITATIONS
109	Two-dimensional reference map of Candida albicans hyphal forms. Proteomics, 2004, 4, 374-382.	1.3	65
110	Contribution of the antibodies response induced by a low virulentCandida albicans strain in protection against systemic candidiasis. Proteomics, 2004, 4, 1204-1215.	1.3	44
111	Proteomics-based identification of novelCandida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics, 2004, 4, 3084-3106.	1.3	150
112	Low virulent strains ofCandida albicans: Unravelling the antigens for a future vaccine. Proteomics, 2004, 4, 3007-3020.	1.3	62
113	Proteomics at Cordoba. Proteomics, 2004, 4, NA-NA.	1.3	3
114	Analysis of the Candida albicans proteomel. Strategies and applications. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 787, 101-128.	1.2	40
115	Analysis of the Candida albicans proteomell. Protein information technology on the Net (update 2002). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 787, 129-148.	1.2	31
116	Sequential Fractionation and Two-dimensional Gel Analysis Unravels the Complexity of the Dimorphic Fungus Candida albicans Cell Wall Proteome. Molecular and Cellular Proteomics, 2002, 1, 967-982.	2.5	228
117	Large-Scale Identification of Putative Exported Proteins in Candida albicans by Genetic Selection. Eukaryotic Cell, 2002, 1, 514-525.	3.4	25
118	A comparison of antigenic peptides in muscle larvae of several <i>Trichinella</i> species by two-dimensional western-blot analysis with monoclonal antibodies. Parasite, 2001, 8, S117-S119.	0.8	16
119	Two different NO-dependent mechanisms account for the low virulence of a non-mycelial morphological mutant of Candida albicans. Medical Microbiology and Immunology, 2001, 189, 153-160.	2.6	19
120	A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and Its Regulation inSaccharomyces cerevisiae. Comparative and Functional Genomics, 2001, 2, 124-142.	2.0	138
121	Analysis of the serologic response to systemicCandida albicans infection in a murine model. Proteomics, 2001, 1, 550-559.	1.3	102
122	Analysis of the serologic response to systemic Candida albicans infection in a murine model. , 2001, 1, 550.		2
123	Novel procedure for the identification of proteins by mass fingerprinting combining two-dimensional electrophoresis with fluorescent SYPRO Red staining. Journal of Mass Spectrometry, 2000, 35, 672-682.	0.7	32
124	Protein localisation approaches for understanding yeast cell wall biogenesis. Microscopy Research and Technique, 2000, 51, 601-612.	1.2	28
125	Cross-species identification of novelCandida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Electrophoresis, 2000, 21, 2651-2659.	1.3	67
126	A proteomic approach for the study ofSaccharomyces cerevisiae cell wall biogenesis. Electrophoresis, 2000, 21, 3396-3410.	1.3	82

#	Article	IF	CITATIONS
127	Novel procedure for the identification of proteins by mass fingerprinting combining two-dimensional electrophoresis with fluorescent SYPRO Red staining. , 2000, 35, 672.		1
128	Low virulence of a morphologicalCandida albicansmutant. FEMS Microbiology Letters, 1999, 176, 311-319.	0.7	24
129	Two-dimensional gel electrophoresis as analytical tool for identifyingCandida albicans immunogenic proteins. Electrophoresis, 1999, 20, 1001-1010.	1.3	86
130	Two-Dimensional analysis of proteins secreted bySaccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. , 1999, 15, 459-472.		82
131	Induced expression of theCandida albicans multidrug resistance geneCDR1 in response to fluconazole and other antifungals. Yeast, 1998, 14, 517-526.	0.8	67
132	Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology (United Kingdom), 1997, 143, 297-302.	0.7	129
133	Cloning ofCandida albicans SEC14 gene homologue coding for a putative essential function. Yeast, 1996, 12, 1097-1105.	0.8	45
134	UnderstandingCandida albicans at the Molecular Level. Yeast, 1996, 12, 1677-1702.	0.8	66
135	Inhibitory and morphological effects of several antifungal agents on three types ofCandida albicansmorphological mutants. Medical Mycology, 1994, 32, 151-162.	0.3	7
136	Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures. Journal of Bacteriology, 1990, 172, 2384-2391.	1.0	27
137	A Complementation Analysis by Parasexual Recombination of Candida albicans Morphological Mutants. Microbiology (United Kingdom), 1988, 134, 1587-1595.	0.7	15
138	Protoplasts Fusion Hybrids from <i>Candida Albicans</i> Morphological Mutants. CRC Critical Reviews in Microbiology, 1987, 15, 79-85.	4.8	14
139	Variability of colonial morphology in benomyl-induced morphological mutants fromCandida albicans. FEMS Microbiology Letters, 1987, 48, 255-259.	0.7	11
140	Numerical taxonomy of <i>Bacillus</i> isolated from orally administered drugs. Journal of Applied Bacteriology, 1986, 61, 347-356.	1.1	4
141	Genetic Analysis of Candida albicans Morphological Mutants. Microbiology (United Kingdom), 1985, 131, 2107-2113.	0.7	45
142	Chronic antidepressant treatment increases enkephalin levels in n. Accumbens and striatum of the rat. European Journal of Pharmacology, 1985, 112, 119-122.	1.7	63
143	Low virulent strains of Candida albicans: Unravelling the antigens for a future vaccine. , 0, , 181-201.		0
144	Proteomics-based identification of novelCandida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. , 0, , 289-324.		0

#	Article	IF	CITATIONS
145	Low virulence of a morphological Candida albicans mutant. , 0, .		2