
Xinquan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581, 215-220.	27.8	4,948
2	Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 2014, 24, 177-189.	12.0	1,719
3	Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584, 115-119.	27.8	1,524
4	Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity, 2020, 52, 971-977.e3.	14.3	979
5	Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathogens, 2018, 14, e1007236.	4.7	716
6	Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Research, 2013, 23, 986-993.	12.0	588
7	Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Research, 2017, 27, 119-129.	12.0	547
8	BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nature Communications, 2017, 8, 13824.	12.8	214
9	Potent Neutralization of MERS-CoV by Human Neutralizing Monoclonal Antibodies to the Viral Spike Glycoprotein. Science Translational Medicine, 2014, 6, 234ra59.	12.4	194
10	Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity, 2021, 54, 1611-1621.e5.	14.3	190
11	Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	168
12	Kinesin 1 Drives Autolysosome Tubulation. Developmental Cell, 2016, 37, 326-336.	7.0	129
13	Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nature Communications, 2019, 10, 3068.	12.8	122
14	Cryo-EM structure of the exocyst complex. Nature Structural and Molecular Biology, 2018, 25, 139-146.	8.2	119
15	Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nature Communications, 2021, 12, 250.	12.8	108
16	Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2. Nature Communications, 2021, 12, 5654.	12.8	89
17	The humoral response and antibodies against SARS-CoV-2 infection. Nature Immunology, 2022, 23, 1008-1020.	14.5	84
18	Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant on the spike of SARS-CoV-2. Nature Communications, 2021, 12, 4210.	12.8	82

XINQUAN WANG

#	Article	IF	CITATIONS
19	Ultra-fast and onsite interrogation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in waters via surface enhanced Raman scattering (SERS). Water Research, 2021, 200, 117243.	11.3	77
20	Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution. Nature Communications, 2021, 12, 1607.	12.8	76
21	Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerging Microbes and Infections, 2019, 8, 841-856.	6.5	71
22	Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition. Journal of Virology, 2017, 91, .	3.4	65
23	Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27. Scientific Reports, 2015, 5, 13133.	3.3	63
24	Ultrapotent Human Neutralizing Antibody Repertoires Against Middle East Respiratory Syndrome Coronavirus From a Recovered Patient. Journal of Infectious Diseases, 2018, 218, 1249-1260.	4.0	63
25	Structural studies of GDNF family ligands with their receptors—Insights into ligand recognition and activation of receptor tyrosine kinase RET. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2205-2212.	2.3	59
26	Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein. Cell Reports, 2018, 24, 441-452.	6.4	57
27	Structural insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction. Cell Research, 2022, 32, 593-595.	12.0	55
28	Structural basis for bivalent binding and inhibition of SARS-CoV-2 infection by human potent neutralizing antibodies. Cell Research, 2021, 31, 517-525.	12.0	54
29	Interleukin-17D regulates group 3 innate lymphoid cell function through its receptor CD93. Immunity, 2021, 54, 673-686.e4.	14.3	53
30	Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Nature Communications, 2020, 11, 3070.	12.8	44
31	Mutation Y453F in the spike protein of SARS-CoV-2 enhances interaction with the mink ACE2 receptor for host adaption. PLoS Pathogens, 2021, 17, e1010053.	4.7	43
32	From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR. Scientific Reports, 2016, 6, 22349.	3.3	41
33	Structural and functional characterization of HIV-1 cell fusion inhibitor T20. Aids, 2019, 33, 1-11.	2.2	38
34	Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection. Emerging Microbes and Infections, 2019, 8, 760-772.	6.5	36
35	Comprehensive analysis of antibody recognition in convalescent humans from highly pathogenic avian influenza H5N1 infection. Nature Communications, 2015, 6, 8855.	12.8	35
36	ULK1 phosphorylates Exo70 to suppress breast cancer metastasis. Nature Communications, 2020, 11, 117.	12.8	35

XINQUAN WANG

#	Article	IF	CITATIONS
37	Comparative analysis reveals the species-specific genetic determinants of ACE2 required for SARS-CoV-2 entry. PLoS Pathogens, 2021, 17, e1009392.	4.7	34
38	Structural Insights on PHA Binding Protein PhaP from Aeromonas hydrophila. Scientific Reports, 2016, 6, 39424.	3.3	30
39	Tumor Necrosis Factor Receptor 2 (TNFR2)·Interleukin-17 Receptor D (IL-17RD) Heteromerization Reveals a Novel Mechanism for NF-κB Activation. Journal of Biological Chemistry, 2015, 290, 861-871.	3.4	27
40	Exceptional potency and structural basis of a T1249-derived lipopeptide fusion inhibitor against HIV-1, HIV-2, and simian immunodeficiency virus. Journal of Biological Chemistry, 2018, 293, 5323-5334.	3.4	27
41	The crystal structure of Ac-AChBP in complex with α-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes. Protein and Cell, 2017, 8, 675-685.	11.0	25
42	Nuclear glutaredoxin 3 is critical for protection against oxidative stress-induced cell death. Free Radical Biology and Medicine, 2015, 85, 197-206.	2.9	24
43	The Rhinolophus affinis bat ACE2 and multiple animal orthologs are functional receptors for bat coronavirus RaTG13 and SARS-CoV-2. Science Bulletin, 2021, 66, 1215-1227.	9.0	24
44	Loss of Spike N370 glycosylation as an important evolutionary event for the enhanced infectivity of SARS-CoV-2. Cell Research, 2022, 32, 315-318.	12.0	24
45	Targeted inhibition of activated protein C by a non-active-site inhibitory antibody to treat hemophilia. Nature Communications, 2020, 11, 2992.	12.8	23
46	Susceptibilities of Human ACE2 Genetic Variants in Coronavirus Infection. Journal of Virology, 2022, 96, JVI0149221.	3.4	22
47	Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. MBio, 2022, 13, e0009922.	4.1	22
48	Structural basis for the specific recognition of ILâ€18 by its alpha receptor. FEBS Letters, 2014, 588, 3838-3843.	2.8	21
49	Selective oxidation of aliphatic C–H bonds in alkylphenols by a chemomimetic biocatalytic system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5129-E5137.	7.1	19
50	RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. IScience, 2022, 25, 104043.	4.1	19
51	High Selectivity of an α-Conotoxin LvIA Analogue for α3β2 Nicotinic Acetylcholine Receptors Is Mediated by β2 Functionally Important Residues. Journal of Medicinal Chemistry, 2020, 63, 13656-13668.	6.4	18
52	A potent and protective human neutralizing antibody targeting a novel vulnerable site of Epstein-Barr virus. Nature Communications, 2021, 12, 6624.	12.8	18
53	Structural insights into the substrate specificity of a glycoside hydrolase family 5 lichenase from <i>Caldicellulosiruptor</i> sp. F32. Biochemical Journal, 2017, 474, 3373-3389.	3.7	17
54	One-step homozygosity in precise gene editing by an improved CRISPR/Cas9 system. Cell Research, 2016, 26, 633-636.	12.0	15

XINQUAN WANG

#	Article	IF	CITATIONS
55	Cardiacâ€specific ablation of glutaredoxin 3 leads to cardiac hypertrophy and heart failure. Physiological Reports, 2019, 7, e14071.	1.7	15
56	A Potent and Protective Human Neutralizing Antibody Against SARS-CoV-2 Variants. Frontiers in Immunology, 2021, 12, 766821.	4.8	15
57	Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket. Frontiers in Cellular and Infection Microbiology, 2018, 8, 51.	3.9	14
58	Crystal Structure of Human ISG15 Protein in Complex with Influenza B Virus NS1B. Journal of Biological Chemistry, 2011, 286, 30258-30262.	3.4	13
59	A novel mechanism underlies caspase-dependent conversion of the dicer ribonuclease into a deoxyribonuclease during apoptosis. Cell Research, 2014, 24, 218-232.	12.0	13
60	Complementary recognition of the receptor-binding site of highly pathogenic H5N1 influenza viruses by two human neutralizing antibodies. Journal of Biological Chemistry, 2018, 293, 16503-16517.	3.4	11
61	Conformational Sampling and Binding Site Assessment of Suppression of Tumorigenicity 2 Ectodomain. PLoS ONE, 2016, 11, e0146522.	2.5	11
62	Structural insight into a GH1 β-glucosidase from the oleaginous microalga, Nannochloropsis oceanica. International Journal of Biological Macromolecules, 2021, 170, 196-206.	7.5	10
63	Structural basis of tetanus toxin neutralization by native human monoclonal antibodies. Cell Reports, 2021, 35, 109070.	6.4	10
64	Modelling of microbial polyhydroxyalkanoate surface binding protein PhaP for rational mutagenesis. Microbial Biotechnology, 2017, 10, 1400-1411.	4.2	8
65	Structural basis of severe acute respiratory syndrome coronavirus 2 infection. Current Opinion in HIV and AIDS, 2021, 16, 74-81.	3.8	7
66	Functional Relevance of Interleukin-1 Receptor Inter-domain Flexibility for Cytokine Binding and Signaling. Structure, 2019, 27, 1296-1307.e5.	3.3	6
67	The spike glycoprotein of highly pathogenic human coronaviruses: structural insights for understanding infection, evolution and inhibition. FEBS Open Bio, 2022, 12, 1602-1622.	2.3	6
68	Structural and functional definition of a vulnerable site on the hemagglutinin of highly pathogenic avian influenza A virus H5N1. Journal of Biological Chemistry, 2019, 294, 4290-4303.	3.4	5
69	Structural insights into the species preference of the influenza B virus NS1 protein in ISG15 binding. Protein and Cell, 2019, 10, 681-687.	11.0	5
70	A sheddingÂsoluble form of interleukin-17 receptor D exacerbates collagen-induced arthritis through facilitatingÂTNF-α-dependent receptor clustering. Cellular and Molecular Immunology, 2020, 18, 1883-1895.	10.5	4
71	CEBIT screening for inhibitors of the interaction between SARS-CoV-2 spike and ACE2. Fundamental Research, 2022, 2, 562-569.	3.3	2
72	From Crystal Structures of RgIA4 in Complex with Ac-AChBP to Molecular Determinants of Its High Potency of α9α10 nAChR. Marine Drugs, 2021, 19, 709.	4.6	1

#	Article	IF	CITATIONS
73	Crystallization and Structural Determination of the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein. Methods in Molecular Biology, 2020, 2099, 39-50.	0.9	0