
Lisa J Lapidus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682408/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Fast Kinetics and Mechanisms in Protein Folding. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 327-359.	18.3	459
2	Effects of Chain Stiffness on the Dynamics of Loop Formation in Polypeptides. Appendix:Â Testing a 1-Dimensional Diffusion Model for Peptide Dynamics. Journal of Physical Chemistry B, 2002, 106, 11628-11640.	2.6	197
3	How fast is protein hydrophobic collapse?. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12117-12122.	7.1	183
4	Curcumin Prevents Aggregation in α-Synuclein by Increasing Reconfiguration Rate. Journal of Biological Chemistry, 2012, 287, 9193-9199.	3.4	147
5	Slow Unfolded-State Structuring in Acyl-CoA Binding Protein Folding Revealed by Simulation and Experiment. Journal of the American Chemical Society, 2012, 134, 12565-12577.	13.7	132
6	Effects of Denaturants on the Dynamics of Loop Formation in Polypeptides. Biophysical Journal, 2006, 91, 276-288.	0.5	93
7	Extremely slow intramolecular diffusion in unfolded protein L. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13713-13717.	7.1	88
8	Unfolded-State Dynamics and Structure of Protein L Characterized by Simulation and Experiment. Journal of the American Chemical Society, 2010, 132, 4702-4709.	13.7	86
9	Molecular Basis for Preventing α-Synuclein Aggregation by a Molecular Tweezer. Journal of Biological Chemistry, 2014, 289, 10727-10737.	3.4	85
10	Aggregation of α-synuclein is kinetically controlled by intramolecular diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2336-2341.	7.1	83
11	Protein Hydrophobic Collapse and Early Folding Steps Observed in a Microfluidic Mixer. Biophysical Journal, 2007, 93, 218-224.	0.5	74
12	Dynamics of Intramolecular Contact Formation in Polypeptides: Distance Dependence of Quenching Rates in a Room-Temperature Glass. Physical Review Letters, 2001, 87, 258101.	7.8	70
13	Kinetics of Intramolecular Contact Formation in a Denatured Protein. Journal of Molecular Biology, 2003, 332, 9-12.	4.2	59
14	Enzyme-free electrochemical immunosensor based on methylene blue and the electro-oxidation of hydrazine on Pt nanoparticles. Biosensors and Bioelectronics, 2017, 92, 372-377.	10.1	59
15	Measuring Dynamic Flexibility of the Coil State of a Helix-forming Peptide. Journal of Molecular Biology, 2002, 319, 19-25.	4.2	48
16	Exploring the Energy Landscape of Nucleic Acid Hairpins Using Laser Temperature-Jump and Microfluidic Mixing. Journal of the American Chemical Society, 2012, 134, 18952-18963.	13.7	43
17	Understanding protein aggregation from the view of monomer dynamics. Molecular BioSystems, 2013, 9, 29-35.	2.9	41
18	Complex Pathways in Folding of Protein G Explored by Simulation and Experiment. Biophysical Journal, 2014, 107, 947-955.	0.5	41

LISA J LAPIDUS

#	Article	IF	CITATIONS
19	Direct Observation of Downhill Folding of λ-Repressor in a Microfluidic Mixer. Biophysical Journal, 2009, 97, 1772-1777.	0.5	39
20	The Intrinsic Stiffness of Polyglutamine Peptides. Journal of Physical Chemistry B, 2008, 112, 13172-13176.	2.6	36
21	Single molecule force spectroscopy at high data acquisition: A Bayesian nonparametric analysis. Journal of Chemical Physics, 2018, 148, 123320.	3.0	35
22	Dynamic Similarity of the Unfolded States of Proteins L and G [,] . Biochemistry, 2007, 46, 10046-10054.	2.5	33
23	Evidence of Multiple Folding Pathways for the Villin Headpiece Subdomain. Journal of Physical Chemistry B, 2011, 115, 12632-12637.	2.6	31
24	Protein unfolding mechanisms and their effects on folding experiments. F1000Research, 2017, 6, 1723.	1.6	31
25	Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form. Neurobiology of Disease, 2017, 106, 191-204.	4.4	28
26	Ruggedness in the folding landscape of protein L. HFSP Journal, 2008, 2, 388-395.	2.5	25
27	Prion protein dynamics before aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3572-3577.	7.1	25
28	Combining Ultrarapid Mixing with Photochemical Oxidation to Probe Protein Folding. Analytical Chemistry, 2013, 85, 4920-4924.	6.5	23
29	Monomer Dynamics of Alzheimer Peptides and Kinetic Control of Early Aggregation in Alzheimer's Disease. ChemPhysChem, 2016, 17, 3470-3479.	2.1	20
30	Complete Procedure for Fabrication of a Fused Silica Ultrarapid Microfluidic Mixer Used in Biophysical Measurements. Micromachines, 2017, 8, 16.	2.9	18
31	Conformational Properties of Unfolded HypF-N. Journal of Physical Chemistry B, 2009, 113, 16209-16213.	2.6	17
32	Exploring the top of the protein folding funnel by experiment. Current Opinion in Structural Biology, 2013, 23, 30-35.	5.7	17
33	Effects of Mutations on the Reconfiguration Rate of α-Synuclein. Journal of Physical Chemistry B, 2015, 119, 15443-15450.	2.6	14
34	A General Polymer Model of Unfolded Proteins under Folding Conditions. Journal of Physical Chemistry B, 2010, 114, 15969-15975.	2.6	13
35	Intramolecular diffusion controls aggregation of the PAPf39 peptide. Biophysical Chemistry, 2016, 216, 37-43.	2.8	11
36	Fluorescent Probe DCVJ Shows High Sensitivity for Characterization of Amyloid βâ€₽eptide Early in the Lag Phase. ChemBioChem, 2017, 18, 2205-2211.	2.6	11

Lisa J Lapidus

#	Article	IF	CITATIONS
37	Intramolecular Diffusion in α-Synuclein: It Depends on How You Measure It. Biophysical Journal, 2018, 115, 1190-1199.	0.5	11
38	Sub-millisecond Chain Collapse of the Escherichia coli Globin ApoHmpH. Journal of Physical Chemistry B, 2013, 117, 7868-7877.	2.6	9
39	Combined Force Ramp and Equilibrium High-Resolution Investigations Reveal Multipath Heterogeneous Unfolding of Protein G. Journal of Physical Chemistry B, 2018, 122, 11155-11165.	2.6	9
40	Microfluidic Mixers for Studying Protein Folding. Journal of Visualized Experiments, 2012, , .	0.3	3
41	The road less traveled in protein folding: evidence for multiple pathways. Current Opinion in Structural Biology, 2021, 66, 83-88.	5.7	3
42	Physics at the Molecular and Cellular Level (P@MCL): A New Curriculum for Introductory Physics. The Biophysicist, 2021, 2, 30-39.	0.3	3
43	Measurement of Submillisecond Protein Folding Using Trp Fluorescence and Photochemical Oxidation. Methods in Molecular Biology, 2022, 2376, 135-142.	0.9	1
44	Symposia lectures. Journal of Biosciences, 1999, 24, 5-31.	1.1	0
45	Exploring the Folding Landscape of Lambda Repressor with Microfluidic Mixing. Biophysical Journal, 2009, 96, 589a.	0.5	0
46	Response to Comment by Shlyonsky. The Biophysicist, 2021, 2, 107-108.	0.3	0