Eunha Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682089/publications.pdf

Version: 2024-02-01

41 papers

1,479 citations

16 h-index 36 g-index

48 all docs 48 docs citations

48 times ranked 2666 citing authors

#	Article	IF	CITATIONS
1	An investigation of spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in Colombia, 2020–2021. PLoS Neglected Tropical Diseases, 2022, 16, e0010228.	3.0	8
2	Transmission Potential of the Omicron Variant of Severe Acute Respiratory Syndrome Coronavirus 2 in South Korea, 25 November 2021–8 January 2022. Open Forum Infectious Diseases, 2022, 9, .	0.9	6
3	Clinical Time Delay Distributions of COVID-19 in 2020–2022 in the Republic of Korea: Inferences from a Nationwide Database Analysis. Journal of Clinical Medicine, 2022, 11, 3269.	2.4	10
4	Proportion of Pre-Symptomatic Transmission Events Associated with COVID-19 in South Korea. Journal of Clinical Medicine, 2022, 11, 3925.	2.4	3
5	Spatial variability in reproduction number and doubling time across two waves of the COVID-19 pandemic in South Korea, February to July, 2020. International Journal of Infectious Diseases, 2021, 102, 1-9.	3.3	23
6	Regional Variability in COVID-19 Case Fatality Rate in Canada, February–December 2020. International Journal of Environmental Research and Public Health, 2021, 18, 1839.	2.6	15
7	Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea. Journal of Clinical Medicine, 2021, 10, 591.	2.4	64
8	Optimal strategies for social distancing and testing to control COVID-19. Journal of Theoretical Biology, 2021, 512, 110568.	1.7	56
9	Delay-Adjusted Age-Specific COVID-19 Case Fatality Rates in a High Testing Setting: South Korea, February 2020 to February 2021. International Journal of Environmental Research and Public Health, 2021, 18, 5053.	2.6	4
10	Temporal Changes in the Risk of Superspreading Events of Coronavirus Disease 2019. Open Forum Infectious Diseases, 2021, 8, ofab350.	0.9	11
11	Vaccine Effects on Susceptibility and Symptomatology Can Change the Optimal Allocation of COVID-19 Vaccines: South Korea as an Example. Journal of Clinical Medicine, 2021, 10, 2813.	2.4	4
12	Projecting the Impact of SARS-CoV-2 Variants and the Vaccination Program on the Fourth Wave of the COVID-19 Pandemic in South Korea. International Journal of Environmental Research and Public Health, 2021, 18, 7578.	2.6	27
13	Predicting New Daily COVID-19 Cases and Deaths Using Search Engine Query Data in South Korea From 2020 to 2021: Infodemiology Study. Journal of Medical Internet Research, 2021, 23, e34178.	4.3	6
14	Optimal strategies for vaccination and social distancing in a game-theoretic epidemiologic model. Journal of Theoretical Biology, 2020, 505, 110422.	1.7	46
15	Estimating the Risk of COVID-19 Death during the Course of the Outbreak in Korea, February–May 2020. Journal of Clinical Medicine, 2020, 9, 1641.	2.4	31
16	Transmission potential and severity of COVID-19 in South Korea. International Journal of Infectious Diseases, 2020, 93, 339-344.	3.3	561
17	Understanding the Community Risk Perceptions of the COVID-19 Outbreak in South Korea: Infodemiology Study. Journal of Medical Internet Research, 2020, 22, e19788.	4.3	30
18	Exploring the potential public health benefits of universal influenza vaccine. Human Vaccines and Immunotherapeutics, 2019, 15, 2919-2926.	3.3	3

#	Article	IF	CITATIONS
19	Compressed Influenza Vaccination in U.S. Older Adults: A Decision Analysis. American Journal of Preventive Medicine, 2019, 56, e135-e141.	3.0	4
20	Impact of seasonal influenza vaccination in the presence of vaccine interference. Vaccine, 2018, 36, 853-858.	3.8	7
21	Potential Cost-Effectiveness of a Universal Influenza Vaccine in Older Adults. Innovation in Aging, 2018, 2, igy035.	0.1	3
22	Potential Consequences of Not Using Live Attenuated Influenza Vaccine. American Journal of Preventive Medicine, 2017, 53, 500-503.	3.0	1
23	Reply to: Estimating the Full Value of Highâ€Dose Influenza Vaccine. Journal of the American Geriatrics Society, 2017, 65, 2111-2112.	2.6	1
24	Cost-effectiveness and public health impact of alternative influenza vaccination strategies in high-risk adults. Vaccine, 2017, 35, 5708-5713.	3.8	11
25	Does cost-effectiveness of influenza vaccine choice vary across the U.S.? An agent-based modeling study. Vaccine, 2017, 35, 3974-3981.	3.8	14
26	Cost-effectiveness of dengue vaccination in Yucat \tilde{A}_i n, Mexico using a dynamic dengue transmission model. PLoS ONE, 2017, 12, e0175020.	2.5	13
27	Cost-Effectiveness of Dengue Vaccination Programs in Brazil. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1227-1234.	1.4	20
28	Cost Effectiveness of Influenza Vaccine for U.S. Children. American Journal of Preventive Medicine, 2016, 51, 309-317.	3.0	11
29	Dengue Dynamics and Vaccine Cost-Effectiveness Analysis in the Philippines. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1137-1147.	1.4	37
30	Costâ€Effectiveness and Public Health Effect of Influenza Vaccine Strategies for U.S. Elderly Adults. Journal of the American Geriatrics Society, 2016, 64, 2126-2131.	2.6	34
31	Cost Effectiveness of Influenza Vaccine Choices in Children Aged 2–8 Years in the U.S American Journal of Preventive Medicine, 2016, 50, 600-608.	3.0	8
32	Qualitative Effects of Monovalent Vaccination Against Rotavirus: A Comparison of North America and South America. Bulletin of Mathematical Biology, 2015, 77, 1854-1885.	1.9	2
33	Population viscosity suppresses disease emergence by preserving local herd immunity. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141901.	2.6	5
34	A Marginal Benefit Approach for Vaccinating Influenza "Superspreaders― Medical Decision Making, 2014, 34, 536-549.	2.4	7
35	Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10, 1615-1634.	1.9	39
36	The influence of altruism on influenza vaccination decisions. Journal of the Royal Society Interface, 2012, 9, 2234-2243.	3.4	168

Еинна Ѕнім

#	Article	lF	CITATION
37	Distinguishing vaccine efficacy and effectiveness. Vaccine, 2012, 30, 6700-6705.	3.8	61
38	A game dynamic model for vaccine skeptics and vaccine believers: Measles as an example. Journal of Theoretical Biology, 2012, 295, 194-203.	1.7	54
39	Differential impact of sickle cell trait on symptomatic and asymptomatic malaria. Mathematical Biosciences and Engineering, 2012, 9, 877-898.	1.9	12
40	Optimal H1N1 vaccination strategies based on self-interest versus group interest. BMC Public Health, 2011, 11, S4.	2.9	37
41	Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences and Engineering, 2011, 8, 95-112.	1.9	11