List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682058/publications.pdf Version: 2024-02-01

NIELS ðDUM

#	Article	IF	CITATIONS
1	Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature Immunology, 2010, 11, 344-349.	14.5	493
2	The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports, 2015, 5, 16148.	3.3	269
3	Multilevel Dysregulation of STAT3 Activation in Anaplastic Lymphoma Kinase-Positive T/Null-Cell Lymphoma. Journal of Immunology, 2002, 168, 466-474.	0.8	247
4	Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood, 2011, 118, 5891-5900.	1.4	237
5	Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia, 1999, 13, 735-738.	7.2	189
6	Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia, 2001, 15, 787-793.	7.2	151
7	In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia, 2004, 18, 1288-1295.	7.2	150
8	STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle, 2013, 12, 1939-1947.	2.6	123
9	STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood, 2001, 97, 1056-1062.	1.4	121
10	Lack of Phosphotyrosine Phosphatase SHP-1 Expression in Malignant T-Cell Lymphoma Cells Results from Methylation of the SHP-1 Promoter. American Journal of Pathology, 2000, 157, 1137-1146.	3.8	118
11	Malignant inflammation in cutaneous Tâ€cell lymphoma—a hostile takeover. Seminars in Immunopathology, 2017, 39, 269-282.	6.1	110
12	Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia, 2006, 20, 1759-1766.	7.2	103
13	Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunology, 2014, 15, 35.	2.2	100
14	miR-122 Regulates p53/Akt Signalling and the Chemotherapy-Induced Apoptosis in Cutaneous T-Cell Lymphoma. PLoS ONE, 2012, 7, e29541.	2.5	99
15	Malignant Cutaneous T-Cell Lymphoma Cells Express IL-17 Utilizing the Jak3/Stat3 Signaling Pathway. Journal of Investigative Dermatology, 2011, 131, 1331-1338.	0.7	94
16	Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood, 2019, 134, 1072-1083.	1.4	94
17	Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood, 2016, 127, 1287-1296.	1.4	86
18	Activated human CD4+ T cells express transporters for both cysteine and cystine. Scientific Reports, 2012. 2. 266.	3.3	85

#	Article	IF	CITATIONS
19	Notch1 as a potential therapeutic target in cutaneous T-cell lymphoma. Blood, 2010, 116, 2504-2512.	1.4	78
20	Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood, 2013, 122, 943-950.	1.4	78
21	Single-cell heterogeneity in Sézary syndrome. Blood Advances, 2018, 2, 2115-2126.	5.2	78
22	Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget, 2015, 6, 20555-20569.	1.8	78
23	Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Scientific Reports, 2017, 7, 14516.	3.3	77
24	Constitutive SOCS-3 expression protects T-cell lymphoma against growth inhibition by IFNα. Leukemia, 2005, 19, 209-213.	7.2	76
25	Rapid allergenâ€induced interleukinâ€17 and interferonâ€Î³ secretion by skinâ€resident memory CD8 ⁺ T cells. Contact Dermatitis, 2017, 76, 218-227.	1.4	71
26	Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis, 2012, 67, 298-305.	1.4	70
27	Role of Dysregulated Cytokine Signaling and Bacterial Triggers in the Pathogenesis ofÂCutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2018, 138, 1116-1125.	0.7	68
28	Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood, 2007, 109, 3325-3332.	1.4	66
29	Bacterial Toxins Fuel Disease Progression in Cutaneous T-Cell Lymphoma. Toxins, 2013, 5, 1402-1421.	3.4	66
30	Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation in Human CD4+ T Cells. PLoS ONE, 2014, 9, e96695.	2,5	65
31	Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines. Cell Cycle, 2014, 13, 2975-2982.	2.6	62
32	Spontaneous interleukin-5 production in cutaneous T-cell lymphoma lines is mediated by constitutively activated Stat3. Blood, 2002, 99, 973-977.	1.4	60
33	Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood, 2014, 124, 761-770.	1.4	59
34	MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Research, 2014, 34, 7207-17.	1.1	55
35	Prognostic miRNA classifier in early-stage mycosis fungoides: development and validation in a Danish nationwide study. Blood, 2018, 131, 759-770.	1.4	54
36	Characterization and Expression of the Human T Cell Receptor-T3 Complex by Monoclonal Antibody F101.01. Scandinavian Journal of Immunology, 1988, 27, 685-696.	2.7	47

#	Article	IF	CITATIONS
37	Regulation of vascular endothelial growth factor in prostate cancer. Endocrine-Related Cancer, 2015, 22, R107-R123.	3.1	47
38	cMyc/miR-125b-5p Signalling Determines Sensitivity to Bortezomib in Preclinical Model of Cutaneous T-Cell Lymphomas. PLoS ONE, 2013, 8, e59390.	2.5	46
39	Circulating Cell-Free miR-375 as Surrogate Marker of Tumor Burden in Merkel Cell Carcinoma. Clinical Cancer Research, 2018, 24, 5873-5882.	7.0	45
40	STAT5 induces miR-21 expression in cutaneous T cell lymphoma. Oncotarget, 2016, 7, 45730-45744.	1.8	45
41	MiR137is an androgen regulated repressor of an extended network of transcriptional coregulators. Oncotarget, 2015, 6, 35710-35725.	1.8	45
42	Analysis of CTCL cell lines reveals important differences between mycosis fungoides/Sézary syndrome <i>vs. HTLV-1+</i> leukemic cell lines. Oncotarget, 2017, 8, 95981-95998.	1.8	44
43	Activation of Stat-3 Is Involved in the Induction of Apoptosis After Ligation of Major Histocompatibility Complex Class I Molecules on Human Jurkat T Cells. Blood, 1998, 91, 3566-3573.	1.4	43
44	EGFR induces expression of IRFâ€1 <i>via</i> STAT1 and STAT3 activation leading to growth arrest of human cancer cells. International Journal of Cancer, 2008, 122, 342-349.	5.1	43
45	Loss of SHP-1 tyrosine phosphatase expression correlates with the advanced stages of cutaneous T-cell lymphoma Human Pathology, 2007, 38, 462-467.	2.0	42
46	A novel xenograft model of cutaneous T ell lymphoma. Experimental Dermatology, 2010, 19, 1096-1102.	2.9	40
47	Multimodal single-cell analysis of cutaneous T-cell lymphoma reveals distinct subclonal tissue-dependent signatures. Blood, 2021, 138, 1456-1464.	1.4	39
48	Ectopic expression of embryonic stem cell and other developmental genes in cutaneous T-cell lymphoma. Oncolmmunology, 2014, 3, e970025.	4.6	38
49	Three distinct developmental pathways for adaptive and two IFN-γ-producing γδT subsets in adult thymus. Nature Communications, 2017, 8, 1911.	12.8	38
50	SATB1 in Malignant T Cells. Journal of Investigative Dermatology, 2018, 138, 1805-1815.	0.7	38
51	Vitamin D Counteracts Mycobacterium tuberculosis-Induced Cathelicidin Downregulation in Dendritic Cells and Allows Th1 Differentiation and IFNÎ ³ Secretion. Frontiers in Immunology, 2017, 8, 656.	4.8	37
52	Investigating potential exogenous tumor initiating and promoting factors for Cutaneous T-Cell Lymphomas (CTCL), a rare skin malignancy. Oncolmmunology, 2016, 5, e1175799.	4.6	36
53	STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clinical Cancer Research, 2016, 22, 3328-3339.	7.0	36
54	Clonotypic Diversity of the T-cell Receptor Corroborates the Immature Precursor Origin of Cutaneous T-cell Lymphoma. Clinical Cancer Research, 2019, 25, 3104-3114.	7.0	36

#	Article	IF	CITATIONS
55	The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncolmmunology, 2018, 7, e1390641.	4.6	33
56	Improving oligo-conjugated antibody signal in multimodal single-cell analysis. ELife, 2021, 10, .	6.0	33
57	Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis. Oncotarget, 2015, 6, 21853-21864.	1.8	33
58	Staphylococcal alpha-toxin tilts the balance between malignant and non-malignant CD4 ⁺ T cells in cutaneous T-cell lymphoma. OncoImmunology, 2019, 8, e1641387.	4.6	32
59	Merkel cell carcinoma-derived exosome-shuttle miR-375 induces fibroblast polarization by inhibition of RBPJ and p53. Oncogene, 2021, 40, 980-996.	5.9	32
60	NKG2D-Dependent Activation of Dendritic Epidermal T Cells in Contact Hypersensitivity. Journal of Investigative Dermatology, 2015, 135, 1311-1319.	0.7	30
61	The role of PIP5K1α/pAKT and targeted inhibition of growth of subtypes of breast cancer using PIP5K1α inhibitor. Oncogene, 2019, 38, 375-389.	5.9	29
62	Validation of a diagnostic microRNA classifier in cutaneous T-cell lymphomas. Leukemia and Lymphoma, 2014, 55, 957-958.	1.3	28
63	Epicutaneous exposure to nickel induces nickel allergy in mice via a <scp>MyD88</scp> â€dependent and interleukinâ€1â€dependent pathway. Contact Dermatitis, 2014, 71, 224-232.	1.4	28
64	Malignant T Cells Secrete Galectins and Induce Epidermal Hyperproliferation and Disorganized Stratification in a Skin Model of Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2015, 135, 238-246.	0.7	28
65	Pathogenic CD8+ Epidermis-Resident Memory T Cells Displace Dendritic Epidermal T Cells in Allergic Dermatitis. Journal of Investigative Dermatology, 2020, 140, 806-815.e5.	0.7	28
66	Cellular Interactions and Inflammation in the Pathogenesis of Cutaneous T-Cell Lymphoma. Frontiers in Cell and Developmental Biology, 2020, 8, 851.	3.7	28
67	MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers, 2020, 12, 1229.	3.7	28
68	IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle, 2014, 13, 1306-1312.	2.6	27
69	Malignant T cells express lymphotoxin $\hat{I}\pm$ and drive endothelial activation in cutaneous T cell lymphoma. Oncotarget, 2015, 6, 15235-15249.	1.8	27
70	ZAPâ€70 and p72 ^{syk} are signaling response elements through MHC class II molecules. Tissue Antigens, 1995, 46, 145-154.	1.0	26
71	Spironolactone induces apoptosis and inhibits NF-κB independent of the mineralocorticoid receptor. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 2159-2165.	4.9	25
72	Expression of miRâ€155 and miRâ€126 <i>in situ</i> in cutaneous Tâ€cell lymphoma. Apmis, 2013, 121, 1020-	102240	25

#	Article	IF	CITATIONS
73	Peptidylarginine deiminase-4 gene polymorphisms are associated with systemic lupus erythematosus and lupus nephritis. Scandinavian Journal of Rheumatology, 2019, 48, 133-140.	1.1	25
74	FoxP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis. Apmis, 2012, 120, 387-396.	2.0	24
75	The functional interlink between AR and MMP9/VECF signaling axis is mediated through PIP5K1α/pAKT in prostate cancer. International Journal of Cancer, 2020, 146, 1686-1699.	5.1	24
76	<i>Staphylococcus aureus</i> alpha-toxin inhibits CD8 ⁺ T cell-mediated killing of cancer cells in cutaneous T-cell lymphoma. OncoImmunology, 2020, 9, 1751561.	4.6	24
77	Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome. Blood Cancer Journal, 2020, 10, 57.	6.2	24
78	Inhibition of succinate dehydrogenase activity impairs human T cell activation and function. Scientific Reports, 2021, 11, 1458.	3.3	24
79	STAT3 Dysregulation in Mature T and NK Cell Lymphomas. Cancers, 2019, 11, 1711.	3.7	23
80	CD8 ⁺ tissueâ€resident memory T cells recruit neutrophils that are essential for flareâ€ups in contact dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 513-524.	5.7	22
81	Vascular endothelial growth factor receptor-3 expression in mycosis fungoides. Leukemia and Lymphoma, 2013, 54, 819-826.	1.3	21
82	The Escherichia coli protein toxin cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cellular Microbiology, 2020, 22, e13138.	2.1	21
83	Macrophages Control the Bioavailability of Vitamin D and Vitamin D-Regulated T Cell Responses. Frontiers in Immunology, 2021, 12, 722806.	4.8	21
84	Bacterial genotoxins induce TÂcell senescence. Cell Reports, 2021, 35, 109220.	6.4	20
85	The metabolic enzyme arginase-2 is a potential target for novel immune modulatory vaccines. Oncolmmunology, 2020, 9, 1771142.	4.6	18
86	Evidence of gene–gene interaction in hidradenitis suppurativa: a nationwide registry study of Danish twins. British Journal of Dermatology, 2022, 186, 78-85.	1.5	18
87	Staphylococcal enterotoxinâ€A directly stimulates signal transduction and interferonâ€Î³ production in psoriatic Tâ€cell lines. Tissue Antigens, 1998, 52, 530-538.	1.0	17
88	Human P2Y11 Expression Level Affects Human P2X7 Receptor-Mediated Cell Death. Frontiers in Immunology, 2018, 9, 1159.	4.8	17
89	JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL). Cancers, 2021, 13, 280.	3.7	17
90	Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. European Journal of Immunology, 2014, 44, 3109-3118.	2.9	16

Niels Ã[~]dum

#	Article	IF	CITATIONS
91	Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells. Scientific Reports, 2019, 9, 16725.	3.3	16
92	Ubiquitin-specific protease 2 decreases p53-dependent apoptosis in cutaneous T-cell lymphoma. Oncotarget, 2016, 7, 48391-48400.	1.8	16
93	Applicability of Small-Molecule Inhibitors in the Study of Peptidyl Arginine Deiminase 2 (PAD2) and PAD4. Frontiers in Immunology, 2021, 12, 716250.	4.8	16
94	Interleukin-26 (IL-26) is a novel anti-microbial peptide produced by T cells in response to staphylococcal enterotoxin. Oncotarget, 2018, 9, 19481-19489.	1.8	15
95	Staphylococcus aureus Induces Signal Transducer and Activator of Transcription 5‒Dependent miR-155 Expression in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2021, 141, 2449-2458.	0.7	15
96	STAT3 activation and infiltration of eosinophil granulocytes in mycosis fungoides. Anticancer Research, 2014, 34, 5277-86.	1.1	15
97	MEK kinase 1 is a negative regulator of virus-specific CD8+ T cells. European Journal of Immunology, 2006, 36, 2076-2084.	2.9	14
98	Expression of <scp>NAD</scp> (P)H quinone dehydrogenase 1 (<scp>NQO</scp> 1) is increased in the endometrium of women with endometrial cancer and women with polycystic ovary syndrome. Clinical Endocrinology, 2017, 87, 557-565.	2.4	14
99	T-Cell Receptor Downregulation by Ceramide-Induced Caspase Activation and Cleavage of the ζ Chain. Scandinavian Journal of Immunology, 2001, 53, 176-183.	2.7	13
100	Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling. European Journal of Immunology, 2002, 32, 616-626.	2.9	13
101	Radically altered T cell receptor signaling in glycopeptide-specific T cell hybridoma induced by antigen with minimal differences in the glycan group. European Journal of Immunology, 2001, 31, 3197-3206.	2.9	12
102	SHP2 REGULATES IL-2 INDUCED MAPK ACTIVATION, BUT NOT Stat3 OR Stat5 TYROSINE PHOSPHORYLATION, IN CUTANEOUS T CELL LYMPHOMA CELLS. Cytokine, 2002, 20, 141-147.	3.2	12
103	Gene variation in IL-7 receptor (IL-7R)α affects IL-7R response in CD4+ T cells in HIV-infected individuals. Scientific Reports, 2017, 7, 42036.	3.3	12
104	Increased Production of IL-17A-Producing Î ³ δT Cells in the Thymus of Filaggrin-Deficient Mice. Frontiers in Immunology, 2018, 9, 988.	4.8	12
105	Hypopigmented Mycosis Fungoides: Loss of Pigmentation Reflects Antitumor Immune Response in Young Patients. Cancers, 2020, 12, 2007.	3.7	12
106	<i>Staphylococcus aureus</i> and Antibiotics in Cutaneous T-Cell Lymphoma. Dermatology, 2022, 238, 551-553.	2.1	11
107	PADI4 Polymorphisms Confer Risk of Anti-CCP-Positive Rheumatoid Arthritis in Synergy With HLA-DRB1*04 and Smoking. Frontiers in Immunology, 2021, 12, 707690.	4.8	10
108	Vitamin D Inhibits IL-22 Production Through a Repressive Vitamin D Response Element in the il22 Promoter. Frontiers in Immunology, 2021, 12, 715059.	4.8	9

Niels Ã[~]dum

#	Article	IF	CITATIONS
109	Peptide vaccination activating Galectin-3-specific T cells offers a novel means to target Galectin-3-expressing cells in the tumor microenvironment. Oncolmmunology, 2022, 11, 2026020.	4.6	9
110	Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development. Placenta, 2017, 56, 79-85.	1.5	8
111	The Thioredoxin-Interacting Protein TXNIP Is a Putative Tumour Suppressor in Cutaneous T-Cell Lymphoma. Dermatology, 2021, 237, 283-290.	2.1	8
112	MicroRNA-93 Targets p21 and Promotes Proliferation in Mycosis Fungoides T Cells. Dermatology, 2021, 237, 277-282.	2.1	8
113	Impaired Vitamin D Signaling in T Cells From a Family With Hereditary Vitamin D Resistant Rickets. Frontiers in Immunology, 2021, 12, 684015.	4.8	8
114	Normal T and B Cell Responses Against SARS-CoV-2 in a Family With a Non-Functional Vitamin D Receptor: A Case Report. Frontiers in Immunology, 2021, 12, 758154.	4.8	7
115	MicroRNA Expression Profile Differs Between Erythrodermic Mycosis Fungoides and Sézary Syndrome. Acta Dermato-Venereologica, 2019, 99, 1148-1153.	1.3	7
116	Midline 1 controls polarization and migration of murine cytotoxic T cells. Immunity, Inflammation and Disease, 2014, 2, 262-271.	2.7	6
117	Diagnostic Two-Gene Classifier in Early-Stage Mycosis Fungoides: A Retrospective MulticenterÂStudy. Journal of Investigative Dermatology, 2021, 141, 213-217.e5.	0.7	6
118	Understanding Cell Lines, Patient-Derived Xenograft and Genetically Engineered Mouse Models Used to Study Cutaneous T-Cell Lymphoma. Cells, 2022, 11, 593.	4.1	6
119	Deregulated signalling and inflammation in cutaneous Tâ€cell lymphoma. British Journal of Dermatology, 2020, 182, 16-17.	1.5	5
120	Low SATB1 Expression Promotes IL-5 and IL-9 Expression in Sézary Syndrome. Journal of Investigative Dermatology, 2020, 140, 713-716.	0.7	5
121	Skin Associated Staphylococcus Aureus Contributes to Disease Progression in CTCL. Blood, 2019, 134, 659-659.	1.4	5
122	<scp>MID</scp> 2 can substitute for <scp>MID</scp> 1 and control exocytosis of lytic granules in cytotoxic T cells. Apmis, 2015, 123, 682-687.	2.0	4
123	The Expression of IL-21 Is Promoted by MEKK4 in Malignant T Cells and Associated with Increased Progression Risk in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2016, 136, 866-869.	0.7	4
124	OMIPâ€057: Mouse γδT ell Development Characterized by a 14 Color Flow Cytometry Panel. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 726-729.	1.5	4
125	Suppressed microRNAâ€195â€5p expression in mycosis fungoides promotes tumor cell proliferation. Experimental Dermatology, 2020, 30, 1141-1149.	2.9	4
126	Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cell sfrom cutaneous T cell lymphoma (CTCL) patients. Oncotarget, 2015, 6, 14374-14384.	1.8	4

#	Article	IF	CITATIONS
127	Human thymic epithelial cells express functional HLAâ€DP molecules. Tissue Antigens, 1996, 47, 300-306.	1.0	3
128	Expression of the Voltage-Gated Potassium Channel Kv1.3 in Lesional Skin from Patients with Cutaneous T-Cell Lymphoma and Benign Dermatitis. Dermatology, 2020, 236, 123-132.	2.1	3
129	Expression and function of Kv1.3 channel in malignant T cells in Sézary syndrome. Oncotarget, 2019, 10, 4894-4906.	1.8	3
130	Proinflammatory biomarkers are associated with prediabetes in patients with schizophrenia. CNS Spectrums, 2022, 27, 347-354.	1.2	3
131	Establishment of Prostate Tumor Growth and Metastasis Is Supported by Bone Marrow Cells and Is Mediated by PIP5K1α Lipid Kinase. Cancers, 2020, 12, 2719.	3.7	3
132	CDK1 links to RARÎ ³ in treatment response of cancer cells. Cell Cycle, 2013, 12, 1659-1659.	2.6	2
133	Anti-regulatory T cells are natural regulatory effector T cells. Cell Stress, 2019, 3, 310-311.	3.2	2
134	Omalizumab serum levels predict treatment outcomes in patients with chronic spontaneous urticaria: A threeâ€month prospective study. Clinical and Experimental Allergy, 2022, 52, 715-718.	2.9	2
135	Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients. Apmis, 2000, 108, 122-130.	2.0	1
136	Epidermal T cell subsets—Effect of age and antigen exposure in humans and mice. Contact Dermatitis, 2021, 84, 375-384.	1.4	1
137	Haematopoietic stem cells and their niches. Cell Cycle, 2015, 14, 3524-3525.	2.6	0
138	PS2:40â€Association of peptidylarginine deiminase (padi)-4 polymorphisms with systemic lupus erythematosus and lupus nephritis. , 2018, , .		0
139	Oncogenic kinase NPM/ALK induces expression of the cellâ€growth stimulatory receptor ICOS. FASEB Journal, 2011, 25, 243.7.	0.5	0
140	Diagnostic 2-Gene Classifier in Early-Stage Mycosis Fungoides: A Retrospective Multicenter Study. Blood, 2019, 134, 2772-2772.	1.4	0
141	FcÎ ³ RIIIa receptor interacts with androgen receptor and PIP5K1α to promote growth and metastasis of prostate cancer. Molecular Oncology, 2022, 16, 2496-2517.	4.6	0