
Jeffrey Royle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681899/publications.pdf Version: 2024-02-01

IFFEDEV DOVIE

#	Article	IF	CITATIONS
1	Extreme uncertainty and unquantifiable bias do not inform population sizes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113862119.	3.3	11
2	A novel application of hierarchical modelling to decouple sampling artifacts from socio-ecological effects on poaching intensity. Biological Conservation, 2022, 267, 109488.	1.9	8
3	Estimating species misclassification with occupancy dynamics and encounter rates: A semiâ€supervised, individualâ€level approach. Methods in Ecology and Evolution, 2022, 13, 1528-1539.	2.2	3
4	Estimating occupancy from autonomous recording unit data in the presence of misclassifications and detection heterogeneity. Methods in Ecology and Evolution, 2022, 13, 1719-1729.	2.2	1
5	Modeling spatiotemporal abundance and movement dynamics using an integrated spatial capture–recapture movement model. Ecology, 2022, 103, .	1.5	4
6	Spatial dynamic Nâ€mixture models with interspecific interactions. Methods in Ecology and Evolution, 2022, 13, 2209-2221.	2.2	1
7	Optimal sampling design for spatial capture–recapture. Ecology, 2021, 102, e03262.	1.5	21
8	Spatial capture–recapture with random thinning for unidentified encounters. Ecology and Evolution, 2021, 11, 1187-1198.	0.8	17
9	Occupancy Patterns of Breeding American Black Ducks. Journal of Wildlife Management, 2020, 84, 150-160.	0.7	3
10	Spatial proximity moderates genotype uncertainty in genetic tagging studies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17903-17912.	3.3	22
11	Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30531-30538.	3.3	70
12	Integrating side-scan sonar and acoustic telemetry to estimate the annual spawning run size of Atlantic sturgeon in the Hudson River. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1038-1048.	0.7	13
13	Acoustic space occupancy: Combining ecoacoustics and lidar to model biodiversity variation and detection bias across heterogeneous landscapes. Ecological Indicators, 2020, 113, 106172.	2.6	17
14	Movement-assisted localization from acoustic telemetry data. Movement Ecology, 2020, 8, 15.	1.3	3
15	Consequences of ignoring group association in spatial capture–recapture analysis. Wildlife Biology, 2020, 2020, .	0.6	35
16	Modeling spatially and temporally complex range dynamics when detection is imperfect. Scientific Reports, 2019, 9, 12805.	1.6	20
17	Reserve design to optimize functional connectivity and animal density. Conservation Biology, 2019, 33, 1023-1034.	2.4	18
18	Incorporating citizen science data in spatially explicit integrated population models. Ecology, 2019, 100, e02777.	1.5	40

#	Article	IF	CITATIONS
19	oSCR: a spatial capture–recapture R package for inference about spatial ecological processes. Ecography, 2019, 42, 1459-1469.	2.1	57
20	Integrated modeling predicts shifts in waterbird population dynamics under climate change. Ecography, 2019, 42, 1470-1481.	2.1	30
21	Spatial capture–recapture for categorically marked populations with an application to genetic capture–recapture. Ecosphere, 2019, 10, e02627.	1.0	43
22	Genetic tagging in the Anthropocene: scaling ecology from alleles to ecosystems. Ecological Applications, 2019, 29, e01876.	1.8	34
23	Using bear rub data and spatial capture-recapture models to estimate trend in a brown bear population. Scientific Reports, 2019, 9, 16804.	1.6	52
24	Dynamic N-mixture models with temporal variability in detection probability. Ecological Modelling, 2019, 393, 20-24.	1.2	14
25	Occupancy Applications. , 2018, , 27-70.		5
26	Fundamental Principals of Statistical Inference. , 2018, , 71-111.		9
27	Basic Presence/Absence Situation. , 2018, , 115-215.		4
28	Beyond Two Occupancy States. , 2018, , 217-241.		0
29	Extensions to Basic Approaches. , 2018, , 243-311.		3
30	Modeling Heterogeneous Detection Probabilities. , 2018, , 313-338.		0
31	Basic Presence/Absence Situation. , 2018, , 341-375.		2
32	More than Two Occupancy States. , 2018, , 377-397.		2
33	Design of Single-Season Occupancy Studies. , 2018, , 439-476.		4
34	Multiple-Season Study Design. , 2018, , 477-486.		0
35	Occupancy in Community-Level Studies. , 2018, , 557-583.		7
36	Spatial capture–recapture with partial identity: An application to camera traps. Annals of Applied Statistics, 2018, 12, .	0.5	70

#	Article	IF	CITATIONS
37	Unifying population and landscape ecology with spatial capture–recapture. Ecography, 2018, 41, 444-456.	2.1	109
38	Living on the edge: Opportunities for Amur tiger recovery in China. Biological Conservation, 2018, 217, 269-279.	1.9	56
39	Observerâ€free experimental evaluation of habitat and distance effects on the detection of anuran and bird vocalizations. Ecology and Evolution, 2018, 8, 12991-13003.	0.8	10
40	Ecoâ€evolutionary rescue promotes host–pathogen coexistence. Ecological Applications, 2018, 28, 1948-1962.	1.8	28
41	Using partial aggregation in spatial capture recapture. Methods in Ecology and Evolution, 2018, 9, 1896-1907.	2.2	29
42	Large-scale variation in density of an aquatic ecosystem indicator species. Scientific Reports, 2018, 8, 8958.	1.6	22
43	Modelling sound attenuation in heterogeneous environments for improved bioacoustic sampling of wildlife populations. Methods in Ecology and Evolution, 2018, 9, 1939-1947.	2.2	14
44	Examining the occupancy–density relationship for a lowâ€density carnivore. Journal of Applied Ecology, 2017, 54, 2043-2052.	1.9	96
45	Modelâ€based approaches to deal with detectability: a comment on Hutto (2016a). Ecological Applications, 2017, 27, 1694-1698.	1.8	10
46	An integrated population model for bird monitoring in North America. Ecological Applications, 2017, 27, 916-924.	1.8	45
47	Scalingâ€up camera traps: monitoring the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 2017, 15, 26-34.	1.9	287
48	Concepts and Practices: Estimating Abundance of Prey Species Using Hierarchical Model-Based Approaches. , 2017, , 137-162.		1
49	Concepts: Assessing Tiger Population Dynamics Using Capture–Recapture Sampling. , 2017, , 163-189.		5
50	Accounting for imperfect detection of groups and individuals when estimating abundance. Ecology and Evolution, 2017, 7, 7304-7310.	0.8	21
51	Spatially explicit dynamic Nâ€mixture models. Population Ecology, 2017, 59, 293-300.	0.7	16
52	Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador. Ursus, 2017, 28, 117.	0.3	56
53	A multistate dynamic site occupancy model for spatially aggregated sessile communities. Methods in Ecology and Evolution, 2017, 8, 757-767.	2.2	0
54	Community distance sampling models allowing for imperfect detection and temporary emigration. Ecosphere, 2017, 8, e02028.	1.0	18

#	Article	IF	CITATIONS
55	Modelâ€based estimators of density and connectivity to inform conservation of spatially structured populations. Ecosphere, 2017, 8, e01623.	1.0	34
56	Management decision making for fisher populations informed by occupancy modeling. Journal of Wildlife Management, 2016, 80, 794-802.	0.7	52
57	Estimating population density and connectivity of American minkÂusing spatial capture–recapture. Ecological Applications, 2016, 26, 1125-1135.	1.8	60
58	Density, distribution, and genetic structure of grizzly bears in the Cabinet‥aak Ecosystem. Journal of Wildlife Management, 2016, 80, 314-331.	0.7	66
59	Estimating species–Âarea relationships by modeling abundance and frequency subject to incomplete sampling. Ecology and Evolution, 2016, 6, 4836-4848.	0.8	32
60	Population Size and Stopover Duration Estimation Using Mark–Resight Data and Bayesian Analysis of a Superpopulation Model. Biometrics, 2016, 72, 262-271.	0.8	32
61	Incorporating Imperfect Detection into Joint Models of Communities: A response to Warton et al Trends in Ecology and Evolution, 2016, 31, 736-737.	4.2	45
62	Integrating occurrence and detectability patterns based on interview data: a case study for threatened mammals in Equatorial Guinea. Scientific Reports, 2016, 6, 33838.	1.6	21
63	Study of biological communities subject to imperfect detection: bias and precision of community <i>N</i> â€mixture abundance models in smallâ€sample situations. Ecological Research, 2016, 31, 289-305.	0.7	44
64	Spatial capture–recapture models allowing Markovian transience or dispersal. Population Ecology, 2016, 58, 53-62.	0.7	82
65	Estimating population density and connectivity of American mink using spatial capture-recapture. , 2015, , .		2
66	Likelihood analysis of spatial capture-recapture models for stratified or class structured populations. Ecosphere, 2015, 6, art22.	1.0	32
67	Small mammal use of native warmâ€season and nonâ€native coolâ€season grass forage fields. Wildlife Society Bulletin, 2015, 39, 49-55.	1.6	1
68	Comparing spatial capture–recapture modeling and nest count methods to estimate orangutan densities in the Wehea Forest, East Kalimantan, Indonesia. Biological Conservation, 2015, 191, 185-193.	1.9	15
69	Modelling nonâ€Euclidean movement and landscape connectivity in highly structured ecological networks. Methods in Ecology and Evolution, 2015, 6, 169-177.	2.2	104
70	An openâ€population hierarchical distance sampling model. Ecology, 2015, 96, 325-331.	1.5	42
71	Estimating Population Size for Capercaillie (Tetrao urogallus L.) with Spatial Capture-Recapture Models Based on Genotypes from One Field Sample. PLoS ONE, 2015, 10, e0129020.	1.1	37
72	Trap Configuration and Spacing Influences Parameter Estimates in Spatial Capture-Recapture Models. PLoS ONE, 2014, 9, e88025.	1.1	131

#	Article	IF	CITATIONS
73	Reply to Efford onâ€~Integrating resource selection information with spatial capture-recapture'. Methods in Ecology and Evolution, 2014, 5, 603-605.	2.2	4
74	Hierarchical spatial capture–recapture models: modelling population density in stratified populations. Methods in Ecology and Evolution, 2014, 5, 37-43.	2.2	38
75	Inferences about population dynamics from count data using multistate models: a comparison to capture–recapture approaches. Ecology and Evolution, 2014, 4, 417-426.	0.8	30
76	Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing. Environmental and Ecological Statistics, 2014, 21, 313-328.	1.9	3
77	Estimating migratory connectivity of birds when reâ€encounter probabilities are heterogeneous. Ecology and Evolution, 2014, 4, 1659-1670.	0.8	25
78	Estimating true instead of apparent survival using spatial <scp>C</scp> ormack– <scp>J</scp> olly– <scp>S</scp> eber models. Methods in Ecology and Evolution, 2014, 5, 1316-1326.	2.2	147
79	Modeling structured population dynamics using data from unmarked individuals. Ecology, 2014, 95, 22-29.	1.5	80
80	Estimating landscape resistance to dispersal. Landscape Ecology, 2014, 29, 1201-1211.	1.9	103
81	A hierarchical model combining distance sampling and time removal to estimate detection probability during avian point counts. Auk, 2014, 131, 476-494.	0.7	91
82	Band reporting probabilities for mallards recovered in the United States and Canada. Journal of Wildlife Management, 2013, 77, 1059-1066.	0.7	16
83	Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Molecular Ecology, 2013, 22, 3888-3903.	2.0	86
84	Population abundance, size structure and sex-ratio in an insular lizard. Ecological Modelling, 2013, 267, 39-47.	1.2	8
85	Markov models for community dynamics allowing for observation error. Ecology, 2013, 94, 2670-2677.	1.5	10
86	A hierarchical nest survival model integrating incomplete temporally varying covariates. Ecology and Evolution, 2013, 3, 4439-4447.	0.8	39
87	Looking for a needle in a haystack: inference about individual fitness components in a heterogeneous population. Oikos, 2013, 122, 739-753.	1.2	54
88	Presenceâ€only modelling using <scp>MAXENT</scp> : when can we trust the inferences?. Methods in Ecology and Evolution, 2013, 4, 236-243.	2.2	537
89	Spatial capture–recapture models for jointly estimating population density and landscape connectivity. Ecology, 2013, 94, 287-294.	1.5	91
90	Integrating resource selection information with spatial capture–recapture. Methods in Ecology and Evolution, 2013, 4, 520-530.	2.2	124

#	Article	IF	CITATIONS
91	Using multiple data sources provides density estimates for endangered Florida panther. Journal of Applied Ecology, 2013, 50, 961-968.	1.9	78
92	Spatially explicit models for inference about density in unmarked or partially marked populations. Annals of Applied Statistics, 2013, 7, .	0.5	249
93	Explaining Local-Scale Species Distributions: Relative Contributions of Spatial Autocorrelation and Landscape Heterogeneity for an Avian Assemblage. PLoS ONE, 2013, 8, e55097.	1.1	33
94	Modeling Trends from North American Breeding Bird Survey Data: A Spatially Explicit Approach. PLoS ONE, 2013, 8, e81867.	1.1	33
95	Assessment of bias in US waterfowl harvest estimates. Wildlife Research, 2012, 39, 336.	0.7	24
96	Population Size of Snowy Plovers Breeding in North America. Waterbirds, 2012, 35, 1-14.	0.2	27
97	Large-scale monitoring of shorebird populations using count data and <i>N</i> -mixture models: Black Oystercatcher (<i>Haematopus bachmani</i>) surveys by land and sea. Auk, 2012, 129, 645-652.	0.7	15
98	Hierarchical distanceâ€sampling models to estimate population size and habitatâ€specific abundance of an island endemic. Ecological Applications, 2012, 22, 1997-2006.	1.8	103
99	Density estimation in tiger populations: combining information for strong inference. Ecology, 2012, 93, 1741-1751.	1.5	77
100	Program <scp>SPACECAP</scp> : software for estimating animal density using spatially explicit capture–recapture models. Methods in Ecology and Evolution, 2012, 3, 1067-1072.	2.2	114
101	Balancing Precision and Risk: Should Multiple Detection Methods Be Analyzed Separately in N-Mixture Models?. PLoS ONE, 2012, 7, e49410.	1.1	11
102	Dealing with incomplete and variable detectability in multi-year, multi-site monitoring of ecological populations. , 2012, , 426-442.		8
103	A framework for inference about carnivore density from unstructured spatial sampling of scat using detector dogs. Journal of Wildlife Management, 2012, 76, 863-871.	0.7	66
104	Estimating abundance of mountain lions from unstructured spatial sampling. Journal of Wildlife Management, 2012, 76, 1551-1561.	0.7	96
105	Spatial modeling of survival and residency and application to the Monitoring Avian Productivity and Survivorship program. Journal of Ornithology, 2012, 152, 469-476.	0.5	12
106	Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. Journal of Ornithology, 2012, 152, 521-537.	0.5	140
107	Bayesian analysis of multi-state data with individual covariates for estimating genetic effects on demography. Journal of Ornithology, 2012, 152, 561-572.	0.5	16
108	Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance models for count data. Biodiversity and Conservation, 2012, 21, 1365-1380.	1.2	87

#	Article	IF	CITATIONS
109	Likelihood analysis of species occurrence probability from presenceâ€only data for modelling species distributions. Methods in Ecology and Evolution, 2012, 3, 545-554.	2.2	349
110	Assessing hypotheses about nesting site occupancy dynamics. Ecology, 2011, 92, 938-951.	1.5	17
111	Hierarchical modeling of an invasive spread: the Eurasian Collared-Dove Streptopelia decaocto in the United States. , 2011, 21, 290-302.		95
112	A hierarchical model for spatial capture–recapture data: comment. Ecology, 2011, 92, 526-528.	1.5	25
113	Inference about density and temporary emigration in unmarked populations. Ecology, 2011, 92, 1429-1435.	1.5	170
114	Accounting for nonâ€independent detection when estimating abundance of organisms with a Bayesian approach. Methods in Ecology and Evolution, 2011, 2, 595-601.	2.2	86
115	Spatial captureâ€recapture models for searchâ€encounter data. Methods in Ecology and Evolution, 2011, 2, 602-611.	2.2	48
116	Modelling community dynamics based on speciesâ€level abundance models from detection/nondetection data. Journal of Applied Ecology, 2011, 48, 67-75.	1.9	73
117	Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model. Animal Conservation, 2011, 14, 652-664.	1.5	30
118	Density estimation in a wolverine population using spatial capture–recapture models. Journal of Wildlife Management, 2011, 75, 604-611.	0.7	79
119	Hierarchical Spatial Capture–Recapture Models for Estimating Density from Trapping Arrays. , 2011, , 163-190.		29
120	Distribution patterns of wintering sea ducks in relation to the North Atlantic Oscillation and local environmental characteristics. Oecologia, 2010, 163, 893-902.	0.9	39
121	Estimating Black Bear Density Using DNA Data From Hair Snares. Journal of Wildlife Management, 2010, 74, 318-325.	0.7	124
122	Siteâ€Occupancy Distribution Modeling to Correct Populationâ€Trend Estimates Derived from Opportunistic Observations. Conservation Biology, 2010, 24, 1388-1397.	2.4	130
123	Use of Spatial Capture-Recapture Modeling and DNA Data to Estimate Densities of Elusive Animals. Conservation Biology, 2010, 25, no-no.	2.4	77
124	Hierarchical modelling and estimation of abundance and population trends in metapopulation designs. Journal of Animal Ecology, 2010, 79, 453-461.	1.3	84
125	Modeling spatial variation in avian survival and residency probabilities. Ecology, 2010, 91, 1885-1891.	1.5	47
126	Models for inference in dynamic metacommunity systems. Ecology, 2010, 91, 2466-2475.	1.5	95

#	Article	IF	CITATIONS
127	Traffic Effects on Bird Counts on North American Breeding Bird Survey Routes. Auk, 2010, 127, 387-393.	0.7	28
128	Multi-species occurrence models to evaluate the effects of conservation and management actions. Biological Conservation, 2010, 143, 479-484.	1.9	232
129	Spatially explicit inference for open populations: estimating demographic parameters from cameraâ€ŧrap studies. Ecology, 2010, 91, 3376-3383.	1.5	162
130	Species richness and occupancy estimation in communities subject to temporary emigration. Ecology, 2009, 90, 1279-1290.	1.5	105
131	Nightly and Seasonal Patterns of Calling in Common True Katydids (Orthoptera:) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 ⁻ 0.4	Tf 50 582 Td
132	Inference About Species Richness and Community Structure Using Species-Specific Occupancy Models in the National Swiss Breeding Bird Survey MHB. , 2009, , 639-656.		60
133	Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries. Ecological Modelling, 2009, 220, 1513-1521.	1.2	28
134	A hierarchical model for estimating density in cameraâ€ŧrap studies. Journal of Applied Ecology, 2009, 46, 118-127.	1.9	198
135	Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. Journal of Applied Ecology, 2009, 46, 815-822.	1.9	270
136	Trend estimation in populations with imperfect detection. Journal of Applied Ecology, 2009, 46, 1163-1172.	1.9	198
137	Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation. Biometrics, 2009, 65, 267-274.	0.8	83
138	Hierarchical models for estimating density from DNA mark–recapture studies. Ecology, 2009, 90, 1106-1115.	1.5	88
139	Modeling the effects of environmental disturbance on wildlife communities: avian responses to prescribed fire. Ecological Applications, 2009, 19, 1253-1263.	1.8	126
140	Bayesian inference in camera trapping studies for a class of spatial capture–recapture models. Ecology, 2009, 90, 3233-3244.	1.5	261
141	Importance of sampling design and analysis in animal population studies: a comment on Sergio <i>etÂal.</i> . Journal of Applied Ecology, 2008, 45, 981-986.	1.9	26
142	Hierarchical modeling of cluster size in wildlife surveys. Journal of Agricultural, Biological, and Environmental Statistics, 2008, 13, 23-36.	0.7	10
143	Modeling Individual Effects in the Cormack–Jolly–Seber Model: A State–Space Formulation. Biometrics, 2008, 64, 364-370.	0.8	165
144	Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys. Journal of Applied Ecology, 2008, 45, 589-598.	1.9	178

#	Article	IF	CITATIONS
145	A HIERARCHICAL MODEL FOR SPATIAL CAPTURE–RECAPTURE DATA. Ecology, 2008, 89, 2281-2289.	1.5	344
146	Movement of Reservoir-Stocked Riverine Fish between Tailwaters and Rivers. Transactions of the American Fisheries Society, 2008, 137, 1530-1542.	0.6	12
147	Analysis of Multinomial Models With Unknown Index Using Data Augmentation. Journal of Computational and Graphical Statistics, 2007, 16, 67-85.	0.9	243
148	Population Influences on Tornado Reports in the United States. Weather and Forecasting, 2007, 22, 571-579.	0.5	72
149	Making Great Leaps Forward: Accounting for Detectability in Herpetological Field Studies. Journal of Herpetology, 2007, 41, 672-689.	0.2	247
150	A BAYESIAN STATE-SPACE FORMULATION OF DYNAMIC OCCUPANCY MODELS. Ecology, 2007, 88, 1813-1823.	1.5	345
151	Evaluation of the Status of Anurans on a Refuge in Suburban Maryland. Journal of Herpetology, 2007, 41, 52-60.	0.2	9
152	HIERARCHICAL SPATIAL MODELS OF ABUNDANCE AND OCCURRENCE FROM IMPERFECT SURVEY DATA. Ecological Monographs, 2007, 77, 465-481.	2.4	152
153	Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions. Biometrics, 2007, 63, 558-567.	0.8	78
154	ESTIMATING SPECIES RICHNESS AND ACCUMULATION BY MODELING SPECIES OCCURRENCE AND DETECTABILITY. Ecology, 2006, 87, 842-854.	1.5	362
155	GENERALIZED SITE OCCUPANCY MODELS ALLOWING FOR FALSE POSITIVE AND FALSE NEGATIVE ERRORS. Ecology, 2006, 87, 835-841.	1.5	300
156	Site Occupancy Models with Heterogeneous Detection Probabilities. Biometrics, 2006, 62, 97-102.	0.8	143
157	Hierarchical models of animal abundance and occurrence. Journal of Agricultural, Biological, and Environmental Statistics, 2006, 11, 249-263.	0.7	131
158	Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology, 2005, 42, 1105-1114.	1.9	1,001
159	Rejoinder to "The Performance of Mixture Models in Heterogeneous Closed Population Capture-Recapture". Biometrics, 2005, 61, 874-876.	0.8	15
160	Modelling occurrence and abundance of species when detection is imperfect. Oikos, 2005, 110, 353-359.	1.2	282
161	RESEARCH NOTES: THE EFFECT OF REWARD BAND VALUE ON MID-CONTINENT MALLARD BAND REPORTING RATES. Journal of Wildlife Management, 2005, 69, 800-804.	0.7	35
162	ESTIMATING SITE OCCUPANCY AND ABUNDANCE USING INDIRECT DETECTION INDICES. Journal of Wildlife Management, 2005, 69, 874-883.	0.7	85

#	Article	IF	CITATIONS
163	USING THE NORTH AMERICAN BREEDING BIRD SURVEY AS A TOOL FOR CONSERVATION: A CRITIQUE OF BART ET AL. (2004). Journal of Wildlife Management, 2005, 69, 1321-1326.	0.7	20
164	Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data. Environmetrics, 2005, 16, 507-522.	0.6	40
165	Efficient statistical mapping of avian count data. Environmental and Ecological Statistics, 2005, 12, 225-243.	1.9	67
166	A GENERAL CLASS OF MULTINOMIAL MIXTURE MODELS FOR ANURAN CALLING SURVEY DATA. Ecology, 2005, 86, 2505-2512.	1.5	75
167	Estimating Size and Composition of Biological Communities by Modeling the Occurrence of Species. Journal of the American Statistical Association, 2005, 100, 389-398.	1.8	416
168	MODELING AVIAN ABUNDANCE FROM REPLICATED COUNTS USING BINOMIAL MIXTURE MODELS. , 2005, 15, 1450-1461.		267
169	Modeling Abundance Index Data from Anuran Calling Surveys. Conservation Biology, 2004, 18, 1378-1385.	2.4	85
170	N â€Mixture Models for Estimating Population Size from Spatially Replicated Counts. Biometrics, 2004, 60, 108-115.	0.8	1,170
171	Dispersal and individual quality in a long lived species. Oikos, 2004, 106, 386-398.	1.2	32
172	MODELING ABUNDANCE EFFECTS IN DISTANCE SAMPLING. Ecology, 2004, 85, 1591-1597.	1.5	236
173	ESTIMATING POPULATION TRENDS WITH A LINEAR MODEL: TECHNICAL COMMENTS. Condor, 2004, 106, 435.	0.7	21
174	Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals. Biometrics, 2003, 59, 351-364.	0.8	195
175	Demographic Analysis from Summaries of an Ageâ€Structured Population. Biometrics, 2003, 59, 778-785.	0.8	39
176	ESTIMATING ABUNDANCE FROM REPEATED PRESENCE–ABSENCE DATA OR POINT COUNTS. Ecology, 2003, 84, 777-790.	1.5	1,013
177	Sexual selection affects local extinction and turnover in bird communities. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5858-5862.	3.3	139
178	Random effects and shrinkage estimation in capture-recapture models. Journal of Applied Statistics, 2002, 29, 329-351.	0.6	30
179	Multiresolution models for nonstationary spatial covariance functions. Statistical Modelling, 2002, 2, 315-331.	0.5	143
180	ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE. Ecology, 2002, 83, 2248-2255.	1.5	3,271

#	Article	IF	CITATIONS
181	Exchange algorithms for constructing large spatial designs. Journal of Statistical Planning and Inference, 2002, 100, 121-134.	0.4	26
182	Modeling Spatial Variation in Waterfowl Band-Recovery Data. Journal of Wildlife Management, 2001, 65, 726.	0.7	22
183	Space: Time Dynamic Design of Environmental Monitoring Networks. Journal of Agricultural, Biological, and Environmental Statistics, 1999, 4, 489.	0.7	59
184	An algorithm for the construction of spatial coverage designs with implementation in SPLUS. Computers and Geosciences, 1998, 24, 479-488.	2.0	101
185	Quantifying the relationship between prey density, livestock and illegal killing of leopards. Journal of Applied Ecology, 0, , .	1.9	7