Jeffrey Royle

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8681899/publications.pdf
Version: 2024-02-01

1	ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE. Ecology, 2002, 83, 2248-2255.	1.5	3,271
2	N â€Mixture Models for Estimating Population Size from Spatially Replicated Counts. Biometrics, 2004, 60, 108-115.	0.8	1,170
3	ESTIMATING ABUNDANCE FROM REPEATED PRESENCEấ"ABSENCE DATA OR POINT COUNTS. Ecology, 2003, 84, 777-790.	1.5	1,013
4	Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology, 2005, 42, 1105-1114.	1.9	1,001
5	Presenceâ€only modelling using <scp>MAXENT</scp>: when can we trust the inferences?. Methods in Ecology and Evolution, 2013, 4, 236-243.	2.2	537
6	Estimating Size and Composition of Biological Communities by Modeling the Occurrence of Species. Journal of the American Statistical Association, 2005, 100, 389-398.	1.8	416
7	ESTIMATING SPECIES RICHNESS AND ACCUMULATION BY MODELING SPECIES OCCURRENCE AND DETECTABILITY. Ecology, 2006, 87, 842-854.	1.5	362
8	Likelihood analysis of species occurrence probability from presenceâ€only data for modelling species distributions. Methods in Ecology and Evolution, 2012, 3, 545-554.	2.2	349
9	A BAYESIAN STATE-SPACE FORMULATION OF DYNAMIC OCCUPANCY MODELS. Ecology, 2007, 88, 1813-1823.	1.5	345

10 A HIERARCHICAL MODEL FOR SPATIAL CAPTUREâ€"RECAPTURE DATA. Ecology, 2008, 89, 2281-2289.

```
11 GENERALIZED SITE OCCUPANCY MODELS ALLOWING FOR FALSE POSITIVE AND FALSE NEGATIVE ERRORS.
GENERALIZED SITE OCCUPANCY MODELS ALLOWING FOR FALSE POSITIVE AND FALSE NEGATIVE ERRORS. 
```

$1.5 \quad 300$

12 Scalingấeup camera traps: monitoring the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 2017, 15, 26-34.
1.9

287
13

Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. Journal of Applied Ecology, 2009, 46, 815-822.
1.9

270

```
MODELING AVIAN ABUNDANCE FROM REPLICATED COUNTS USING BINOMIAL MIXTURE MODELS. , 2005, 15,
1450-1461.
```

Bayesian inference in camera trapping studies for a class of spatial captureâ $€$ "recapture models.
1.5

261
Ecology, 2009, 90, 3233-3244.

Spatially explicit models for inference about density in unmarked or partially marked populations.
Annals of Applied Statistics, 2013, 7, .
0.5

249
\qquad

Herpetology, 2007, 41, 672-689.
Multi-species occurrence models to evaluate the effects of conservation and management actions
Biological Conservation, 2010, 143, 479-484.

A hierarchical model for estimating density in cameraâ€trap studies. Journal of Applied Ecology, 2009,
46, 118-127.
1.9

198

Trend estimation in populations with imperfect detection. Journal of Applied Ecology, 2009, 46,
1163-1172.
1.9

Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among
Individuals. Biometrics, 2003, 59, 351-364.
0.8

195
25 Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys. 1.9

Inference ab
1429-1435.
1.5

170

27	Modeling Individual Effects in the Cormackâ $€$ "Jollyâ $€$ "Seber Model: A Stateâ€"Space Formulation. Biometrics, 2008, 64, 364-370.	0.8	165
28	Spatially explicit inference for open populations: estimating demographic parameters from cameraâ€屯rap studies. Ecology, 2010, 91, 3376-3383.	1.5	162
29	HIERARCHICAL SPATIAL MODELS OF ABUNDANCE AND OCCURRENCE FROM IMPERFECT SURVEY DATA. Ecological Monographs, 2007, 77, 465-481.	2.4	152
30	Estimating true instead of apparent survival using spatial <scp>C</scp>ormackâ€"<scp>\|</scp>ollyâ€"<scp>S</scp>eber models. Methods in Ecology and Evolution, 2014, 5, 1316-1326.	2.2	147
31	Multiresolution models for nonstationary spatial covariance functions. Statistical Modelling, 2002, 2, 315-331.	0.5	143

32 Site Occupancy Models with Heterogeneous Detection Probabilities. Biometrics, 2006, 62, 97-102. 143

> Parameter-expanded data augmentation for Bayesian analysis of captureâ€"recapture models. Journal of
> Ornithology, 2012, 152,521-537.
0.5

140

Sexual selection affects local extinction and turnover in bird communities. Proceedings of the
National Academy of Sciences of the United States of America, 2003, 100, 5858-5862.
3.3

139

37	Siteâ€Occupancy Distribution Modeling to Correct Populationâ€ Opportunistic Observations. Conservation Biology, 2010, 24, 1388-1397.	2.4	130
38	Modeling the effects of environmental disturbance on wildlife communities: avian responses to prescribed fire. Ecological Applications, 2009, 19, 1253-1263.	1.8	126
39	Estimating Black Bear Density Using DNA Data From Hair Snares. Journal of Wildlife Management, 2010, 74, 318-325.	0.7	124
40	Integrating resource selection information with spatial captureâ€"recapture. Methods in Ecology and Evolution, 2013, 4, 520-530.	2.2	124
41	Program <scp>SPACECAP</scp> : software for estimating animal density using spatially explicit captureâ€"recapture models. Methods in Ecology and Evolution, 2012, 3, 1067-1072.	2.2	114
42	Unifying population and landscape ecology with spatial captureâ€"recapture. Ecography, 2018, 41, 444-456.	2.1	109
43	Species richness and occupancy estimation in communities subject to temporary emigration. Ecology, 2009, 90, 1279-1290.	1.5	105
44	Modelling nonâ€Euclidean movement and landscape connectivity in highly structured ecological networks. Methods in Ecology and Evolution, 2015, 6, 169-177.	2.2	104
45	Hierarchical distanceâ€sampling models to estimate population size and habitatâ€specific abundance of island endemic. Ecological Applications, 2012, 22, 1997-2006.	1.8	103

46 Estimating landscape resistance to dispersal. Landscape Ecology, 2014, 29, 1201-1211.

47	An algorithm for the construction of spatial coverage designs with implementation in SPLUS. Computers and Geosciences, 1998, 24, 479-488.	2.0	101
48	Estimating abundance of mountain lions from unstructured spatial sampling. Journal of Wildlife Management, 2012, 76, 1551-1561.	0.7	96
49	Examining the occupancyâ€"density relationship for a lowâ€density carnivore. Journal of Applied Ecology, 2017, 54, 2043-2052.	1.9	96

50 Models for inference in dynamic metacommunity systems. Ecology, 2010, 91, 2466-2475. 1.5 95
Hierarchical modeling of an invasive spread: the Eurasian Collared-Dove Streptopelia decaocto in the 95 United States., $2011,21,290-302$. 0Spatial captureâ€"recapture models for jointly estimating population density and landscape

A hierarchical model combining distance sampling and time removal to estimate detection probability
during avian point counts. Auk, 2014, 131, 476-494.

55	Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance models for count data. Biodiversity and Conservation, 2012, 21, 1365-1380.	1.2
56	Accounting for nonâ $\mathfrak{\text { inndepend }}$ detection when estimating abundance of organisms with a Bayesian approach. Methods in Ecology and Evolution, 2011, 2, 595-601.	2.2
57	Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Molecular Ecology, 2013, 22, 3888-3903.	2.0
58	Modeling Abundance Index Data from Anuran Calling Surveys. Conservation Biology, 2004, 18, 1378-1385.	2.4
59	ESTIMATING SITE OCCUPANCY AND ABUNDANCE USING INDIRECT DETECTION INDICES. Journal of Wildlife Management, 2005, 69, 874-883.	0.7
60	Hierarchical modelling and estimation of abundance and population trends in metapopulation designs. Journal of Animal Ecology, 2010, 79, 453-461.	1.3
61	Analysis of Captureâ€"Recapture Models with Individual Covariates Using Data Augmentation. Biometrics, 2009, 65, 267-274.	0.8
62	Spatial captureâ€"recapture models allowing Markovian transience or dispersal. Population Ecology, 2016, 58, 53-62.	0.7
63	Modeling structured population dynamics using data from unmarked individuals. Ecology, 2014, 95, 22-29.	1.5
64	Density estimation in a wolverine population using spatial captureâ€"recapture models. Journal of Wildlife Management, 2011, 75, 604-611.	0.7

65 Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions. Biometrics, 2007, 63, 558-567. 78

66	Using multiple data sources provides density estimates for endangered Florida panther. Journal of	
Applied Ecology, 2013, 50, 961-968.	1.9	78

67 Use of Spatial Capture-Recapture Modeling and DNA Data to Estimate Densities of Elusive Animals. $\quad 77$
$68 \quad 93,1741-1751$. 1.5 77
A GENERAL CLASS OF MULTINOMIAL MIXTURE MODELS FOR ANURAN CALLING SURVEY DATA. Ecology, 2005, 86, 2505-2512.

Modelling community dynamics based on speciesâ€level abundance models from detection/nondetection data. Journal of Applied Ecology, 2011, 48, 67-75.

Population Influences on Tornado Reports in the United States. Weather and Forecasting, 2007, 22,
571-579.
0.5 72

Estimating and forecasting spatial population dynamics of apex predators using transnational genetic
monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30531-30538.

Efficient statistical mapping of avian count data. Environmental and Ecological Statistics, 2005, 12, 225-243.
1.9

A framework for inference about carnivore density from unstructured spatial sampling of scat using detector dogs. Journal of Wildlife Management, 2012, 76, 863-871.

Density, distribution, and genetic structure of grizzly bears in the Cabinetâ€ $\underset{\text { aak E E Cosystem. Journal of }}{ }$ Wildlife Management, 2016, 80, 314-331.

Inference About Species Richness and Community Structure Using Species-Specific Occupancy Models
in the National Swiss Breeding Bird Survey MHB. , 2009, , 639-656.

Estimating population density and connectivity of American minkÂusing spatial captureâ€"recapture.
Ecological Applications, 2016, 26, 1125-1135.
1.8

Space: Time Dynamic Design of Environmental Monitoring Networks. Journal of Agricultural,
$79 \quad \begin{aligned} & \text { Space: Time Dynamic Design of Environmental Monitor } \\ & \text { Biological, and Environmental Statistics, 1999, 4, 489. }\end{aligned}$
0.7

59

80 oSCR: a spatial captureấ"recapture R package for inference about spatial ecological processes.
Ecography, 2019, 42, 1459-1469.

Use of spatial captureâ€"recapture to estimate density of Andean bears in northern Ecuador. Ursus,
2017, 28, 117.

Living on the edge: Opportunities for Amur tiger recovery in China. Biological Conservation, 2018, 217, 269-279.
1.9

56
.254 population. Oikos, 2013, 122, 739-753.

Management decision making for fisher populations informed by occupancy modeling. Journal of
84 Wildlife Management, 2016, 80, 794-802.
0.7

52

Using bear rub data and spatial capture-recapture models to estimate trend in a brown bear population. Scientific Reports, 2019, 9, 16804.

Spatial captureâ€recapture models for searchâ€encounter data. Methods in Ecology and Evolution, 2011, 2, 602-611.
2.2

48

87 Modeling spatial variation in avian survival and residency probabilities. Ecology, 2010, 91, 1885-1891.
1.5

47

Incorporating Imperfect Detection into Joint Models of Communities: A response to Warton et al..

Spatial captureâe"recapture for categorically marked populations with an application to genetic
captureấ"recapture. Ecosphere, 2019, 10, e02627.

An openâ€population hierarchical distance sampling model. Ecology, 2015, 96, 325-331.
1.5

Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data.
Environmetrics, 2005, 16, 507-522.

Incorporating citizen science data in spatially explicit integrated population models. Ecology, 2019, 100, e02777.

Demographic Analysis from Summaries of an Ageâ€Structured Population. Biometrics, 2003, 59, 778-785.
0.8

Distribution patterns of wintering sea ducks in relation to the North Atlantic Oscillation and local environmental characteristics. Oecologia, 2010, 163, 893-902.
0.9

A hierarchical nest survival model integrating incomplete temporally varying covariates. Ecology and
Evolution, 2013, 3, 4439-4447.
0.8

39

Hierarchical spatial captureâ€"recapture models: modelling population density in stratified populations. Methods in Ecology and Evolution, 2014, 5, 37-43.

99 Estimating Population Size for Capercaillie (Tetrao urogallus L.) with Spatial Capture-Recapture
Models Based on Genotypes from One Field Sample. PLoS ONE, 2015, 10, e0129020.

RESEARCH NOTES: THE EFFECT OF REWARD BAND VALUE ON MID-CONTINENT MALLARD BAND REPORTING RATES. Journal of Wildlife Management, 2005, 69, 800-804.
0.7

35

101 Consequences of ignoring group association in spatial captureâ€"recapture analysis. Wildlife Biology,
2020, 2020,

Genetic tagging in the Anthropocene: scaling ecology from alleles to ecosystems. Ecological Applications, 2019, 29, e01876.

Modelâ€based estimators of density and connectivity to inform conservation of spatially structured populations. Ecosphere, 2017, 8, e01623.

Explaining Local-Scale Species Distributions: Relative Contributions of Spatial Autocorrelation and Landscape Heterogeneity for an Avian Assemblage. PLoS ONE, 2013, 8, e55097.

Modeling Trends from North American Breeding Bird Survey Data: A Spatially Explicit Approach. PLoS ONE, 2013, 8, e81867.

Dispersal and individual quality in a long lived species. Oikos, 2004, 106, 386-398.
1.2

Likelihood analysis of spatial capture-recapture models for stratified or class structured
populations. Ecosphere, 2015, 6, art22.
1.0

32
109 Population Size and Stopover Duration Estimation Using Markâ€"Resight Data and Bayesian Analysis of a

Random effects and shrinkage estimation in capture-recapture models. Journal of Applied Statistics, 2002, 29, 329-351.

Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in
a hierarchical model. Animal Conservation, 2011, 14, 652-664.

Inferences about population dynamics from count data using multistate models: a comparison to captureâ€"recapture approaches. Ecology and Evolution, 2014, 4, 417-426.

Integrated modeling predicts shifts in waterbird population dynamics under climate change. Ecography, 2019, 42, 1470-1481.

Using partial aggregation in spatial capture recapture. Methods in Ecology and Evolution, 2018, 9, 1896-1907.

Hierarchical Spatial Captureâ€"Recapture Models for Estimating Density from Trapping Arrays. , 2011, , 163-190.

Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries. Ecological Modelling, 2009, 220, 1513-1521.

117 Traffic Effects on Bird Counts on North American Breeding Bird Survey Routes. Auk, 2010, 127, 387-393.
0.7

28

Ecoâ€evolutionary rescue promotes hostâ€"pathogen coexistence. Ecological Applications, 2018, 28,
1948-1962.

119 Population Size of Snowy Plovers Breeding in North America. Waterbirds, 2012, 35, 1-14.

Exchange algorithms for constructing large spatial designs. Journal of Statistical Planning and
Inference, 2002, 100, 121-134.

Importance of sampling design and analysis in animal population studies: a comment on Sergio
<i>etÂal.<|i>. Journal of Applied Ecology, 2008, 45, 981-986.

122 A hierarchical model for spatial captureâ€"recapture data: comment. Ecology, 2011, 92, 526-528.
1.5

Estimating migratory connectivity of birds when reâ€encounter probabilities are heterogeneous.
Ecology and Evolution, 2014, 4, 1659-1670.

Assessment of bias in US waterfowl harvest estimates. Wildlife Research, 2012, 39, 336.
0.7

Modeling Spatial Variation in Waterfowl Band-Recovery Data. Journal of Wildlife Management, 2001, 65, 726.

Large-scale variation in density of an aquatic ecosystem indicator species. Scientific Reports, 2018, 8,
8958.

129	Integrating occurrence and detectability patterns based on interview data: a case study for threatened mammals in Equatorial Guinea. Scientific Reports, 2016, 6, 33838.	1.6	21
130	Accounting for imperfect detection of groups and individuals when estimating abundance. Ecology and Evolution, 2017, 7, 7304-7310.	0.8	21
131	Optimal sampling design for spatial captureấ"'recapture. Ecology, 2021, 102, e03262.	1.5	21
132	USING THE NORTH AMERICAN BREEDING BIRD SURVEY AS A TOOL FOR CONSERVATION: A CRITIQUE OF BART ET AL. (2004). Journal of Wildlife Management, 2005, 69, 1321-1326.	0.7	20
133	Modeling spatially and temporally complex range dynamics when detection is imperfect. Scientific Reports, 2019, 9, 12805.	1.6	20
134	Community distance sampling models allowing for imperfect detection and temporary emigration. Ecosphere, 2017, 8, e02028.	1.0	18
135	Reserve design to optimize functional connectivity and animal density. Conservation Biology, 2019, 33, 1023-1034.	2.4	18

136 Assessing hypotheses about nesting site occupancy dynamics. Ecology, 2011, 92, 938-951.
137 Acoustic space occupancy: Combining ecoacoustics and lidar to model biodiversity variation and detection bias across heterogeneous landscapes. Ecological Indicators, 2020, 113, 106172.
2.6 17
Spatial captureâ€"recapture with random thinning for unidentified encounters. Ecology and Evolution, 0.8 17
138 2021, 11, 1187-1198
138 2021, 11, 1187-1198Bayesian analysis of multi-state data with individual covariates for estimating genetic effects on0.516demography. Journal of Ornithology, 2012, 152, 561-572.

Band reporting probabilities for mallards recovered in the United States and Canada. Journal of
$145 \quad \begin{aligned} & \text { Modelling sound attenuation in heterogeneous environments for improved bi } \\ & \text { wildlife populations. Methods in Ecology and Evolution, 2018, 9, 1939-1947. }\end{aligned}$ 2.2 14
1.2 14
Dynamic N -mixture models with temporal variability in detection probability. Ecological Modelling,
146 2019, 393, 20-24. 2019, 393, 20-24.
0.7 13Integrating side-scan sonar and acoustic telemetry to estimate the annual spawning run size of147 Atlantic sturgeon in the Hudson River. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77,
1038-1048.
149 Nightly and Seasonal Patterns of Calling in Common True Katydids (Orthoptera:) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf 50.4282 T
150 Spatial modeling of survival and residency and application to the Monitoring Avian Productivity andSurvivorship program. Journal of Ornithology, 2012, 152, 469-476.$0.5 \quad 12$
151 Balancing Precision and Risk: Should Multiple Detection Methods Be Analyzed Separately in N-Mixture Models?. PLoS ONE, 2012, 7, e49410. 1.1 11
Extreme uncertainty and unquantifiable bias do not inform population sizes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113862119.
Hierarchical modeling of cluster size in wildlife surveys. Journal of Agricultural, Biological, and
$155 \quad \begin{aligned} & \text { Modelâ€based approaches to deal } \\ & \text { Applications, 2017, 27, 1694-1698. }\end{aligned}$1.810
Observerâ€free experimental evaluation of habitat and distance effects on the detection of anuran andbird vocalizations. Ecology and Evolution, 2018, 8, 12991-13003.0.810
Evaluation of the Status of Anurans on a Refuge in Suburban Maryland. Journal of Herpetology, 2007,
159 Dealing with incomplete and variable detectability in multi-year, multi-site monitoring of ecological 8 populations. , 2012, , 426-442.Population abundance, size structure and sex-ratio in an insular lizard. Ecological Modelling, 2013,
165 Occupancy Applications. , 2018, , 27-70. 5
Reply to Efford onâ $€^{\sim}$ Integrating resource selection information with spatial capture-recaptureâ $€^{\mathrm{TM}}$.Methods in Ecology and Evolution, 2014, 5, 603-605.
$169 \begin{aligned} & \text { Modeling spatiotemporal abundance and movement dynamic } \\ & \text { captureâ€"recapture movement model. Ecology, 2022, 103, }\end{aligned}$
171 Extensions to Basic Approaches. , 2018, , 243-311. 3

Occupancy Patterns of Breeding American Black Ducks. Journal of Wildlife Management, 2020, 84, 150-160.
$0.7 \quad 3$

173 Movement-assisted localization from acoustic telemetry data. Movement Ecology, 2020, 8, 15.
1.3

3

174 Estimating species misclassification with occupancy dynamics and encounter rates: A semiâ€supervised, individualâ€level approach. Methods in Ecology and Evolution, 2022, 13, 1528-1539.
2.2

3

Estimating population density and connectivity of American mink using spatial capture-recapture. ,

Small mammal use of native warmâ€season and nonâ€native coolâ€season grass forage fields. Wildlife Society Bulletin, 2015, 39, 49-55.

182 A multistate dynamic site occupancy model for spatially aggregated sessile communities. Methods in

