Roberto Galizi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genetics, 2021, 17, e1009321.	3.5	72
2	A Code of Ethics for Gene Drive Research. CRISPR Journal, 2021, 4, 19-24.	2.9	24
3	Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors. Sustainability, 2021, 13, 5653.	3.2	4
4	A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression. Nature Communications, 2021, 12, 3977.	12.8	34
5	Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation. PLoS Genetics, 2021, 17, e1009740.	3.5	21
6	The Potential for a Released Autosomal X-Shredder Becoming a Driving-Y Chromosome and Invasively Suppressing Wild Populations of Malaria Mosquitoes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 752253.	4.1	8
7	Cellular mechanisms regulating synthetic sex ratio distortion in the <i>Anopheles gambiae</i> germline. Pathogens and Global Health, 2020, 114, 370-378.	2.3	10
8	Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies. Tropical Medicine and Infectious Disease, 2020, 5, 161.	2.3	6
9	Engineered RNA-Interacting CRISPR Guide RNAs for Genetic Sensing and Diagnostics. CRISPR Journal, 2020, 3, 398-408.	2.9	12
10	A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nature Biotechnology, 2020, 38, 1054-1060.	17.5	153
11	High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Scientific Reports, 2019, 9, 14841.	3.3	26
12	Introgression of a synthetic sex ratio distortion system from Anopheles gambiae into Anopheles arabiensis. Scientific Reports, 2019, 9, 5158.	3.3	11
13	Engineering CRISPR guide RNA riboswitches for in vivo applications. Current Opinion in Biotechnology, 2019, 55, 103-113.	6.6	24
14	Molecular tools and genetic markers for the generation of transgenic sexing strains in Anopheline mosquitoes. Parasites and Vectors, 2018, 11, 660.	2.5	10
15	A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology, 2018, 36, 1062-1066.	17.5	648
16	Cross-Species Y Chromosome Function Between Malaria Vectors of the <i>Anopheles gambiae</i> Species Complex. Genetics, 2017, 207, 729-740.	2.9	18
17	Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity. Nucleic Acids Research, 2017, 45, 8621-8634.	14.5	12
18	Gene drives to fight malaria: current state and future directions. Pathogens and Global Health, 2017, 111, 412-423.	2.3	78

ROBERTO GALIZI

#	Article	IF	CITATIONS
19	The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genetics, 2017, 13, e1007039.	3.5	243
20	Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. Proceedings of the United States of America, 2016, 113, E2114-23.	7.1	92
21	A CRISPR-Cas9 sex-ratio distortion system for genetic control. Scientific Reports, 2016, 6, 31139.	3.3	160
22	A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 2016, 34, 78-83.	17.5	985
23	Expression of the glycolytic enzymes enolase and lactate dehydrogenase during the early phase of <scp><i>T</i></scp> <i>oxoplasma</i> differentiation is regulated by an intron retention mechanism. Molecular Microbiology, 2015, 96, 1159-1175.	2.5	25
24	The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs. BMC Genomics, 2015, 16, 100.	2.8	44
25	Site-specific genetic engineering of the <i>Anopheles gambiae</i> Y chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7600-7605.	7.1	79
26	A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nature Communications, 2014, 5, 3977.	12.8	258
27	Evidence of tRNA cleavage in apicomplexan parasites: Half-tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei. Molecular and Biochemical Parasitology, 2013, 188, 99-108.	1.1	22
28	Temporal and Spatial Distribution of <i>Toxoplasma gondii</i> Differentiation into Bradyzoites and Tissue Cyst Formation In Vivo. Infection and Immunity, 2008, 76, 3491-3501.	2.2	85