Rebecca A Wingert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PGC-1α in Disease: Recent Renal Insights into a Versatile Metabolic Regulator. Cells, 2020, 9, 2234.	1.8	49
2	Ppargc1a Controls Ciliated Cell Development by Regulating Prostaglandin Biosynthesis. Cell Reports, 2020, 33, 108370.	2.9	23
3	Advances in understanding vertebrate nephrogenesis. Tissue Barriers, 2020, 8, 1832844.	1.6	12
4	Kctd15 regulates nephron segment development by repressing Tfap2a activity. Development (Cambridge), 2020, 147, .	1.2	15
5	Ppargc1a Regulates Prostaglandin Signaling to Control Ciliogenesis and Renal Multiciliated Cell Fate Choice During Development. FASEB Journal, 2020, 34, 1-1.	0.2	0
6	Estrogen modulation of fate choice during kidney development. FASEB Journal, 2020, 34, 1-1.	0.2	0
7	New zebrafish model for monitoring proximal tubule physiology in genetic and acquired renal Fanconi syndromes. Kidney International, 2020, 97, 1097-1099.	2.6	Ο
8	Kctd15 Regulates Nephron Segment Differentiation by Repressing Tfap2a Activity. FASEB Journal, 2020, 34, 1-1.	0.2	0
9	A zebrafish tale of parabiosis, podocytes, and proteinuria. Kidney International, 2019, 96, 272-275.	2.6	Ο
10	Visualizing gene expression during zebrafish pronephros development and regeneration. Methods in Cell Biology, 2019, 154, 183-215.	0.5	17
11	Mechanisms of Nephrogenesis Revealed by Zebrafish Chemical Screen: Prostaglandin Signaling Modulates Nephron Progenitor Fate. Nephron, 2019, 143, 68-76.	0.9	15
12	Tfap2a is a novel gatekeeper of nephron differentiation during kidney development. Development (Cambridge), 2019, 146, .	1.2	41
13	Iroquois transcription factor irx2a is required for multiciliated and transporter cell fate decisions during zebrafish pronephros development. Scientific Reports, 2019, 9, 6454.	1.6	22
14	Prostaglandin signaling regulates renal multiciliated cell specification and maturation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8409-8418.	3.3	39
15	Nephron repair: powered by anaerobic energy metabolism. Annals of Translational Medicine, 2019, 7, S28-S28.	0.7	Ο
16	Homeogene emx1 is required for nephron distal segment development in zebrafish. Scientific Reports, 2018, 8, 18038.	1.6	25
17	Scaling up to study brca2: the zeppelin zebrafish mutant reveals a role for brca2 in embryonic development of kidney mesoderm. Cancer Cell & Microenvironment, 2018, 4, .	0.8	5
18	ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny. ELife, 2018, 7, .	2.8	25

REBECCA A WINGERT

#	Article	IF	CITATIONS
19	The tbx2a/b transcription factors direct pronephros segmentation and corpuscle of Stannius formation in zebrafish. Developmental Biology, 2017, 421, 52-66.	0.9	31
20	Zebrafish as a Model of Kidney Disease. Results and Problems in Cell Differentiation, 2017, 60, 55-75.	0.2	48
21	The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development. Developmental Biology, 2017, 428, 148-163.	0.9	38
22	Visualizing Multiciliated Cells in the Zebrafish Through a Combined Protocol of Whole Mount Fluorescent In Situ Hybridization and Immunofluorescence. Journal of Visualized Experiments, 2017, , .	0.2	19
23	Principles of Stem Cell Biology Applied to the Kidney. , 2017, , 817-827.		1
24	Repopulating Decellularized Kidney Scaffolds: An Avenue for Ex Vivo Organ Generation. Materials, 2016, 9, 190.	1.3	18
25	Little fish, big catch: zebrafish as a model for kidney disease. Kidney International, 2016, 89, 1204-1210.	2.6	63
26	Antennas of organ morphogenesis: the roles of cilia in vertebrate kidney development. Genesis, 2016, 54, 457-469.	0.8	48
27	Nephrotoxin Microinjection in Zebrafish to Model Acute Kidney Injury. Journal of Visualized Experiments, 2016, , .	0.2	3
28	Epithelial cell fate in the nephron tubule is mediated by the ETS transcription factors etv5a and etv4 during zebrafish kidney development. Developmental Biology, 2016, 411, 231-245.	0.9	45
29	Evolving technology: creating kidney organoids from stem cells. AIMS Bioengineering, 2016, 3, 305-318.	0.6	11
30	Renal progenitors: Roles in kidney disease and regeneration. World Journal of Stem Cells, 2016, 8, 367.	1.3	20
31	Insights into kidney stem cell development and regeneration using zebrafish. World Journal of Stem Cells, 2016, 8, 22.	1.3	20
32	Prostaglandin signaling regulates nephron segment patterning of renal progenitors during zebrafish kidney development. ELife, 2016, 5, .	2.8	44
33	Microbead Implantation in the Zebrafish Embryo. Journal of Visualized Experiments, 2015, , e52943.	0.2	7
34	Recent Advances in Elucidating the Genetic Mechanisms of Nephrogenesis Using Zebrafish. Cells, 2015, 4, 218-233.	1.8	18
35	Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration. Stem Cells International, 2015, 2015, 1-19.	1.2	51
36	Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish. Developmental Biology, 2015, 399, 100-116.	0.9	52

Rebecca A Wingert

#	Article	IF	CITATIONS
37	Zebrafish Renal Pathology: Emerging Models of Acute Kidney Injury. Current Pathobiology Reports, 2015, 3, 171-181.	1.6	40
38	Temporal and spatial expression of tight junction genes during zebrafish pronephros development. Gene Expression Patterns, 2014, 16, 104-113.	0.3	47
39	Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Developmental Biology, 2014, 396, 183-200.	0.9	56
40	Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis, 2014, 52, 771-792.	0.8	47
41	New tides: using zebrafish to study renal regeneration. Translational Research, 2014, 163, 109-122.	2.2	51
42	Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Developmental Biology, 2014, 386, 111-122.	0.9	85
43	A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos. Journal of Visualized Experiments, 2014, , e52063.	0.2	20
44	Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney. Journal of Visualized Experiments, 2014, , e51644.	0.2	31
45	Production of Haploid Zebrafish Embryos by In Vitro Fertilization. Journal of Visualized Experiments, 2014, , .	0.2	30
46	Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization. Journal of Visualized Experiments, 2014, , .	0.2	38
47	Roles of Iroquois Transcription Factors in Kidney Development. Cell & Developmental Biology, 2014, 03, 1000131.	0.3	25
48	Renal stem cell reprogramming: Prospects in regenerative medicine. World Journal of Stem Cells, 2014, 6, 458.	1.3	21
49	Regenerative medicine for the kidney: stem cell prospects & challenges. Clinical and Translational Medicine, 2013, 2, 11.	1.7	54
50	Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 559-585.	5.9	100
51	Congenital and Acute Kidney Disease: Translational Research Insights from Zebrafish Chemical Genetics. General Medicine (Los Angeles, Calif), 2013, 01, 112.	0.2	18
52	Knockdown of SCFSkp2 Function Causes Double-Parked Accumulation in the Nucleus and DNA Re-Replication in Drosophila Plasmatocytes. PLoS ONE, 2013, 8, e79019.	1.1	3
53	Renal stem cells: fact or science fiction?. Biochemical Journal, 2012, 444, 153-168.	1.7	59
54	Laser Ablation of the Zebrafish Pronephros to Study Renal Epithelial Regeneration. Journal of Visualized Experiments, 2011, , .	0.2	31

Rebecca A Wingert

#	Article	IF	CITATIONS
55	Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Developmental Biology, 2011, 354, 134-142.	0.9	48
56	Dissection of the Adult Zebrafish Kidney. Journal of Visualized Experiments, 2011, , .	0.2	27
57	Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature, 2011, 470, 95-100.	13.7	258
58	Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Developmental Biology, 2011, 358, 318-330.	0.9	81
59	Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and <i>irx3b</i> . Developmental Dynamics, 2011, 240, 2011-2027.	0.8	100
60	Transferrin-a modulates hepcidin expression in zebrafish embryos. Blood, 2009, 113, 2843-2850.	0.6	57
61	Combinatorial regulation of novel erythroid gene expression in zebrafish. Experimental Hematology, 2008, 36, 424-432.	0.2	26
62	montalcino, A zebrafish model for variegate porphyria. Experimental Hematology, 2008, 36, 1132-1142.	0.2	36
63	The zebrafish pronephros: A model to study nephron segmentation. Kidney International, 2008, 73, 1120-1127.	2.6	180
64	The cdx Genes and Retinoic Acid Control the Positioning and Segmentation of the Zebrafish Pronephros. PLoS Genetics, 2007, 3, e189.	1.5	287
65	Nephron Development in Zebrafish. FASEB Journal, 2007, 21, A141.	0.2	2
66	Transferrin Acts as an Iron Sensor Upstream of BMP2b in the Zebrafish Blood, 2007, 110, 704-704.	0.6	0
67	Genetic Dissection of Hematopoiesis Using the Zebrafish. , 2006, , 14-31.		2
68	Mitoferrin is essential for erythroid iron assimilation. Nature, 2006, 440, 96-100.	13.7	514
69	Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature, 2005, 436, 1035-1039.	13.7	343
70	Loss of Gata1 but Not Gata2 Converts Erythropoiesis to Myelopoiesis in Zebrafish Embryos. Developmental Cell, 2005, 8, 109-116.	3.1	224
71	The chianti zebrafish mutant provides a model for erythroid-specific disruption of transferrin receptor 1. Development (Cambridge), 2004, 131, 6225-6235.	1.2	62
72	The Zebrafish Hypochromic Mutant [iltalic]Shiraz[/iltalic] Encodes a Novel Mitochondrial Glutaredoxin That Establishes a Link between Heme and Fe/S Production Blood, 2004, 104, 51-51.	0.6	6