
Manju M Hingorani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Processivity Clamp Opening by the Delta Subunit Wrench of the Clamp Loader Complex of E. coli DNA Polymerase III. Cell, 2001, 106, 417-428.	28.9	236
2	ATP Binding to the Escherichia coli Clamp Loader Powers Opening of the Ring-shaped Clamp of DNA Polymerase III Holoenzyme. Journal of Biological Chemistry, 1998, 273, 24550-24563.	3.4	128
3	Sliding clamps: A (tail)ored fit. Current Biology, 2000, 10, R25-R29.	3.9	108
4	Mismatch Recognition-Coupled Stabilization of Msh2-Msh6 in an ATP-Bound State at the Initiation of DNA Repairâ€. Biochemistry, 2003, 42, 7682-7693.	2.5	89
5	The δ Subunit of DNA Polymerase III Holoenzyme Serves as a Sliding Clamp Unloader in Escherichia coli. Journal of Biological Chemistry, 2000, 275, 34609-34618.	3.4	79
6	Overproduction and analysis of eukaryotic multiprotein complexes in Escherichia coli using a dual-vector strategy. Analytical Biochemistry, 2003, 319, 78-87.	2.4	76
7	A tale of toroids in DNA metabolism. Nature Reviews Molecular Cell Biology, 2000, 1, 22-30.	37.0	74
8	Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling. EMBO Journal, 2012, 31, 2528-2540.	7.8	73
9	Replication Factor C Clamp Loader Subunit Arrangement within the Circular Pentamer and Its Attachment Points to Proliferating Cell Nuclear Antigen. Journal of Biological Chemistry, 2003, 278, 50744-50753.	3.4	70
10	Mechanism of Loading the Escherichia coli DNA Polymerase III Î ² Sliding Clamp on DNA. Journal of Biological Chemistry, 2003, 278, 10033-10040.	3.4	69
11	Mechanism of MutS Searching for DNA Mismatches and Signaling Repair. Journal of Biological Chemistry, 2008, 283, 36646-36654.	3.4	62
12	Asymmetric ATP Binding and Hydrolysis Activity of theThermus aquaticusMutS Dimer Is Key to Modulation of Its Interactions with Mismatched DNAâ€. Biochemistry, 2004, 43, 13115-13128.	2.5	61
13	Mechanism of β Clamp Opening by the δ Subunit ofEscherichia coli DNA Polymerase III Holoenzyme. Journal of Biological Chemistry, 2001, 276, 19182-19189.	3.4	59
14	A Model for Escherichia coli DNA Polymerase III Holoenzyme Assembly at Primer/Template Ends. Journal of Biological Chemistry, 2000, 275, 3006-3015.	3.4	58
15	MutL traps MutS at a DNA mismatch. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10914-10919.	7.1	58
16	Molecular Mechanism and Energetics of Clamp Assembly inEscherichia coli. Journal of Biological Chemistry, 2000, 275, 28413-28420.	3.4	57
17	Toroidal proteins: Running rings around DNA. Current Biology, 1998, 8, R83-R86.	3.9	52
18	Mechanism of ATP-Driven PCNA Clamp Loading by S. cerevisiae RFC. Journal of Molecular Biology, 2009, 388, 431-442.	4.2	47

Manju M Hingorani

#	Article	IF	CITATIONS
19	The Effects of Nucleotides on MutS-DNA Binding Kinetics Clarify the Role of MutS ATPase Activity in Mismatch Repair. Journal of Molecular Biology, 2007, 366, 1087-1098.	4.2	45
20	Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA. Nucleic Acids Research, 2012, 40, 5448-5464.	14.5	44
21	<scp>DnaN</scp> clamp zones provide a platform for spatiotemporal coupling of mismatch detection to <scp>DNA</scp> replication. Molecular Microbiology, 2013, 87, 553-568.	2.5	44
22	Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2–Msh6 mismatch repair protein. DNA Repair, 2006, 5, 153-162.	2.8	42
23	Mismatch binding, ADP–ATP exchange and intramolecular signaling during mismatch repair. DNA Repair, 2016, 38, 24-31.	2.8	39
24	ATP Binding and Hydrolysis-Driven Rate-Determining Events in the RFC-Catalyzed PCNA Clamp Loading Reaction. Journal of Molecular Biology, 2012, 416, 176-191.	4.2	38
25	Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway. Nucleic Acids Research, 2018, 46, 2956-2974.	14.5	34
26	On the Specificity of Interaction between the Saccharomyces cerevisiae Clamp Loader Replication Factor C and Primed DNA Templates during DNA Replication. Journal of Biological Chemistry, 2002, 277, 47213-47224.	3.4	33
27	Human MSH2 (hMSH2) Protein Controls ATP Processing by hMSH2-hMSH6. Journal of Biological Chemistry, 2011, 286, 40287-40295.	3.4	33
28	A Central Swivel Point in the RFC Clamp Loader Controls PCNA Opening and Loading on DNA. Journal of Molecular Biology, 2012, 416, 163-175.	4.2	31
29	Impact of Individual Proliferating Cell Nuclear Antigen-DNA Contacts on Clamp Loading and Function on DNA. Journal of Biological Chemistry, 2012, 287, 35370-35381.	3.4	30
30	Biochemical Analysis of the Human Mismatch Repair Proteins hMutSα MSH2G674A-MSH6 and MSH2-MSH6T1219D. Journal of Biological Chemistry, 2012, 287, 9777-9791.	3.4	28
31	Slow Conformational Changes in MutS and DNA Direct Ordered Transitions between Mismatch Search, Recognition and Signaling of DNA Repair. Journal of Molecular Biology, 2013, 425, 4192-4205.	4.2	28
32	Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Research, 2018, 46, 10782-10795.	14.5	28
33	<i>Saccharomyces cerevisiae</i> Msh2-Msh6 DNA binding kinetics reveal a mechanism of targeting sites for DNA mismatch repair. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 680-685.	7.1	24
34	MutSÎ ³ -Induced DNA Conformational Changes Provide Insights into Its Role in Meiotic Recombination. Biophysical Journal, 2018, 115, 2087-2101.	0.5	21
35	Recurrent mismatch binding by MutS mobile clamps on DNA localizes repair complexes nearby. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17775-17784.	7.1	21
36	Dynamical Allosterism in the Mechanism of Action of DNA Mismatch Repair Protein MutS. Biophysical Journal, 2011, 101, 1730-1739.	0.5	20

Manju M Hingorani

#	Article	IF	CITATIONS
37	Role of a Conserved Glutamate Residue in the Escherichia coli SecA ATPase Mechanism. Journal of Biological Chemistry, 2005, 280, 14611-14619.	3.4	17
38	Evolutionary Covariance Combined with Molecular Dynamics Predicts a Framework for Allostery in the MutS DNA Mismatch Repair Protein. Journal of Physical Chemistry B, 2017, 121, 2049-2061.	2.6	17
39	DNA Polymerase Structure and Mechanisms of Action. Current Organic Chemistry, 2000, 4, 887-913.	1.6	16
40	The ATPase mechanism of UvrA2 reveals the distinct roles of proximal and distal ATPase sites in nucleotide excision repair. Nucleic Acids Research, 2019, 47, 4136-4152.	14.5	14
41	Model-Based Global Analysis of Heterogeneous Experimental Data Using gfit. Methods in Molecular Biology, 2009, 500, 335-359.	0.9	13
42	The Variable Subdomain of Escherichia coli SecA Functions To Regulate SecA ATPase Activity and ADP Release. Journal of Bacteriology, 2012, 194, 2205-2213.	2.2	12
43	Interactions between avidin and graphene for development of a biosensing platform. Biosensors and Bioelectronics, 2017, 89, 326-333.	10.1	12
44	Dual Functions, Clamp Opening and Primer-Template Recognition, Define a Key Clamp Loader Subunit. Journal of Molecular Biology, 2004, 342, 1457-1469.	4.2	11
45	Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism. Journal of Biological Chemistry, 2017, 292, 15892-15906.	3.4	11
46	Positioning the 5′-flap junction in the active site controls the rate of flap endonuclease-1–catalyzed DNA cleavage. Journal of Biological Chemistry, 2018, 293, 4792-4804.	3.4	11
47	Conserved residues in the δ subunit help the E. coli clamp loader, γ complex, target primer-template DNA for clamp assembly. Nucleic Acids Research, 2008, 36, 3274-3286.	14.5	7
48	Application of Stopped-flow Kinetics Methods to Investigate the Mechanism of Action of a DNA Repair Protein. Journal of Visualized Experiments, 2010, , .	0.3	7
49	Mismatch Recognition by Saccharomyces cerevisiae Msh2-Msh6: Role of Structure and Dynamics. International Journal of Molecular Sciences, 2019, 20, 4271.	4.1	4
50	TIRF(ing) reveals Msh2-Msh6 surfing on DNA. Nature Structural and Molecular Biology, 2007, 14, 1124-1125.	8.2	2
51	Global and Local Conformational Studies of Mismatched Duplex DNAÂUpon Msh2-Msh6 Binding by Steady-State and Time-Resolved Fluorescence. Biophysical Journal, 2013, 104, 76a.	0.5	0
52	Msh4-Msh5 Induced DNA Conformational Changes Provide Insights into Its Role in Meiotic Recombination. Biophysical Journal, 2019, 116, 21a.	0.5	0
53	Examination of the ATPase Mechanism of <i>Saccharomyces cerevisiae</i> Replication Factor C. FASEB Journal, 2007, 21, A658.	0.5	0
54	Mopping up after messy polymerases and moreâ \in \mid . FASEB Journal, 2008, 22, 526.2.	0.5	0

#	Article	IF	CITATIONS
55	Search and repair of bona fide baseâ€pair mismatches in DNA. FASEB Journal, 2009, 23, .	0.5	0
56	A Sliding Scale Governs Mismatch Recognition and Initiation of DNA Mismatch Repair. FASEB Journal, 2010, 24, 876.5.	0.5	0
57	MutS and DNA dynamics during mismatch recognition and repair FASEB Journal, 2013, 27, .	0.5	0
58	Biochemical Analysis of S. cerevisiae Msh2â€Msh3 Activity in Triplet Nucleotide Repeat Expansion. FASEB Journal, 2013, 27, 542.3.	0.5	0
59	Investigating the Link Between Mutations in MutS DNA Repair Protein and Lynch Cancer Syndrome. FASEB Journal, 2018, 32, .	0.5	0