

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8678921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bagâ€1 mediates glucocorticoid receptor trafficking to mitochondria after corticosterone stimulation: Potential role in regulating affective resilience. Journal of Neurochemistry, 2021, 158, 358-372.	3.9	9
2	Activation of FXR by ganoderic acid A promotes remyelination in multiple sclerosis via anti-inflammation and regeneration mechanism. Biochemical Pharmacology, 2021, 185, 114422.	4.4	11
3	Ganoderic Acid A Attenuates LPS-Induced Neuroinflammation in BV2 Microglia by Activating Farnesoid X Receptor. Neurochemical Research, 2021, 46, 1725-1736.	3.3	19
4	Automatic discrimination of different sequences and phases of liver MRI using a dense feature fusion neural network: a preliminary study. Abdominal Radiology, 2021, 46, 4576-4587.	2.1	1
5	Ganoderic acid A exerted antidepressant-like action through FXR modulated NLRP3 inflammasome and synaptic activity. Biochemical Pharmacology, 2021, 188, 114561.	4.4	22
6	Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system. Brain Research Bulletin, 2021, 171, 16-24.	3.0	26
7	Saliency-based 3D convolutional neural network for categorising common focal liver lesions on multisequence MRI. Insights Into Imaging, 2021, 12, 173.	3.4	7
8	Nuclear receptors modulate inflammasomes in the pathophysiology and treatment of major depressive disorder. World Journal of Psychiatry, 2021, 11, 1191-1205.	2.7	2
9	Oridonin is an antidepressant molecule working through the PPAR-γ/AMPA receptor signaling pathway. Biochemical Pharmacology, 2020, 180, 114136.	4.4	12
10	Cordycepin (3â€2-deoxyadenosine) promotes remyelination via suppression of neuroinflammation in a cuprizone-induced mouse model of demyelination. International Immunopharmacology, 2019, 75, 105777.	3.8	17
11	Interleukin-4 signalling pathway underlies the anxiolytic effect induced by 3-deoxyadenosine. Psychopharmacology, 2019, 236, 2959-2973.	3.1	7
12	A Maitake (<i>Grifola frondosa</i>) polysaccharide ameliorates Alzheimer's disease-like pathology and cognitive impairments by enhancing microglial amyloid-β clearance. RSC Advances, 2019, 9, 37127-37135.	3.6	25
13	A Polysaccharide Extract from Maitake Culinary-Medicinal Mushroom, Grifola frondosa (Agaricomycetes) Ameliorates Learning and Memory Function in Aluminum Chloride-Induced Amnesia in Mice. International Journal of Medicinal Mushrooms, 2019, 21, 1065-1074.	1.5	7
14	Contrasting effects of acute and long-term corticosterone treatment on amyloid-β, beta-secretase 1 expression, and nuclear factor kappa B nuclear translocation. Journal of Integrative Neuroscience, 2019, 18, 393.	1.7	2
15	Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD). Pediatric Radiology, 2017, 47, 899-910.	2.0	23
16	<i>Griflola frondosa</i> (GF) produces significant antidepressant effects involving AMPA receptor activation in mice. Pharmaceutical Biology, 2017, 55, 299-305.	2.9	2
17	Lentinan produces a robust antidepressant-like effect via enhancing the prefrontal Dectin-1/AMPA receptor signaling pathway. Behavioural Brain Research, 2017, 317, 263-271.	2.2	24
18	The Role of Nutrients in Protecting Mitochondrial Function and Neurotransmitter Signaling: Implications for the Treatment of Depression, PTSD, and Suicidal Behaviors. Critical Reviews in Food Science and Nutrition, 2016, 56, 2560-2578.	10.3	78

Jing Du

#	Article	IF	CITATIONS
19	The Prefrontal Dectin-1/AMPA Receptor Signaling Pathway Mediates The Robust and Prolonged Antidepressant Effect of Proteo-β-Glucan from Maitake. Scientific Reports, 2016, 6, 28395.	3.3	11
20	KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia. Molecular Psychiatry, 2016, 21, 1517-1526.	7.9	28
21	Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting <italic>EYA2</italic> . Acta Biochimica Et Biophysica Sinica, 2016, 48, 220-228.	2.0	30
22	3'-Deoxyadenosine (Cordycepin) Produces a Rapid and Robust Antidepressant Effect via Enhancing Prefrontal AMPA Receptor Signaling Pathway. International Journal of Neuropsychopharmacology, 2016, 19, pyv112.	2.1	22
23	Risk given by <i>AGT</i> polymorphisms in inducing susceptibility to essential hypertension among isolated populations from a remote region of China: A case-control study among the isolated populations. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 1202-1217.	1.7	4
24	The Bcl-2 Gene Polymorphism rs956572AA Increases Inositol 1,4,5-Trisphosphate Receptor–Mediated Endoplasmic Reticulum Calcium Release in Subjects with Bipolar Disorder. Biological Psychiatry, 2011, 69, 344-352.	1.3	65
25	Does gene deletion of AMPA GluA1 phenocopy features of schizoaffective disorder?. Neurobiology of Disease, 2010, 40, 608-621.	4.4	77
26	A kinesin signaling complex mediates the ability of GSK-3Î ² to affect mood-associated behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11573-11578.	7.1	110
27	Synaptic Plasticity in the Pathophysiology and Treatment of Bipolar Disorder. Current Topics in Behavioral Neurosciences, 2010, 5, 167-185.	1.7	11
28	A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. International Journal of Neuropsychopharmacology, 2009, 12, 561.	2.1	267
29	Glucocorticoid receptors modulate mitochondrial function. Communicative and Integrative Biology, 2009, 2, 350-352.	1.4	79
30	Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. International Journal of Neuropsychopharmacology, 2009, 12, 805.	2.1	135
31	Dynamic regulation of mitochondrial function by glucocorticoids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3543-3548.	7.1	392
32	Evidence for Selective microRNAs and Their Effectors as Common Long-Term Targets for the Actions of Mood Stabilizers. Neuropsychopharmacology, 2009, 34, 1395-1405.	5.4	284
33	Valproate activates the Notch3/câ€FLIP signaling cascade: a strategy to attenuate white matter hyperintensities in bipolar disorder in late life?. Bipolar Disorders, 2009, 11, 256-269.	1.9	23
34	Genomeâ€wide gene expression profiling in GluR1 knockout mice: key role of the calcium signaling pathway in glutamatergically mediated hippocampal transmission. European Journal of Neuroscience, 2009, 30, 2318-2326.	2.6	13
35	Glutamate receptors as targets of protein kinase C in the pathophysiology and treatment of animal models of Mania. Neuropharmacology, 2009, 56, 47-55.	4.1	90
36	Cellular Mechanisms Underlying the Antidepressant Effects of Ketamine: Role of α-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic Acid Receptors. Biological Psychiatry, 2008, 63, 349-352.	1.3	1,006

Jing Du

#	Article	IF	CITATIONS
37	Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology, 2008, 54, 577-587.	4.1	98
38	<i>BAG1</i> plays a critical role in regulating recovery from both manic-like and depression-like behavioral impairments. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8766-8771.	7.1	68
39	The Role of Hippocampal GluR1 and GluR2 Receptors in Manic-Like Behavior. Journal of Neuroscience, 2008, 28, 68-79.	3.6	98
40	The Anticonvulsants Lamotrigine, Riluzole, and Valproate Differentially Regulate AMPA Receptor Membrane Localization: Relationship to Clinical Effects in Mood Disorders. Neuropsychopharmacology, 2007, 32, 793-802.	5.4	188
41	Enhancing AMPA to NMDA throughput as a convergent mechanism for antidepressant action. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 519-526.	0.5	45
42	The Anti-Apoptotic, Glucocorticoid Receptor Cochaperone Protein BAG-1 Is a Long-Term Target for the Actions of Mood Stabilizers. Journal of Neuroscience, 2005, 25, 4493-4502.	3.6	85
43	Modulation of Synaptic Plasticity by Antimanic Agents: The Role of AMPA Glutamate Receptor Subunit 1 Synaptic Expression. Journal of Neuroscience, 2004, 24, 6578-6589.	3.6	148
44	Bipolar disorder: involvement of signaling cascades and AMPA receptor trafficking at synapses. Neuron Glia Biology, 2004, 1, 231-243.	1.6	40
45	Neurotrophic signaling cascades are major long-term targets for lithium: clinical implications. Clinical Neuroscience Research, 2004, 4, 137-153.	0.8	10
46	Focus on CaMKII: a molecular switch in the pathophysiology and treatment of mood and anxiety disorders. International Journal of Neuropsychopharmacology, 2004, 7, 243-248.	2.1	39
47	Regulation of cellular plasticity and resilience by mood stabilizers: the role of AMPA receptor trafficking. Dialogues in Clinical Neuroscience, 2004, 6, 143-155.	3.7	12
48	Regulation of Cellular Plasticity Cascades in the Pathophysiology and Treatment of Mood Disorders. Annals of the New York Academy of Sciences, 2003, 1003, 273-291.	3.8	165
49	Structurally Dissimilar Antimanic Agents Modulate Synaptic Plasticity by Regulating AMPA Glutamate Receptor Subunit GluR1 Synaptic Expression. Annals of the New York Academy of Sciences, 2003, 1003, 378-380.	3.8	47
50	Lithium Regulates Total and Synaptic Expression of the AMPA Glutamate Receptor GluR2 <i>in Vitro</i> and <i>in Vivo</i> . Annals of the New York Academy of Sciences, 2003, 1003, 402-404.	3.8	22
51	Regulation of TrkB receptor tyrosine kinase and its internalization by neuronal activity and Ca2+ influx. Journal of Cell Biology, 2003, 163, 385-395.	5.2	86
52	Possible involvement of the ERK signaling cascade in bipolar disorder: Behavioral leads from the study of mutant mice. Drug News and Perspectives, 2003, 16, 453.	1.5	47
53	Ca2+ Binding Protein Frequenin Mediates GDNF-Induced Potentiation of Ca2+ Channels and Transmitter Release. Neuron, 2001, 32, 99-112.	8.1	103
54	Protein Synthesis-dependent and -independent Regulation of Hippocampal Synapses by Brain-derived Neurotrophic Factor. Journal of Biological Chemistry, 2001, 276, 37585-37593.	3.4	165

Jing Du

#	Article	IF	CITATIONS
55	GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nature Neuroscience, 2001, 4, 1071-1078.	14.8	180
56	Frequencyâ€dependent regulation of rat hippocampal somatoâ€dendritic excitability by the K + channel subunit Kv2.1. Journal of Physiology, 2000, 522, 19-31.	2.9	193
57	Snap-25 is polarized to axons and abundant along the axolemma: an immunogold study of intact neurons. Journal of Neurocytology, 2000, 29, 67-77.	1.5	57
58	Activity- and Ca2+-Dependent Modulation of Surface Expression of Brain-Derived Neurotrophic Factor Receptors in Hippocampal Neurons. Journal of Cell Biology, 2000, 150, 1423-1434.	5.2	165
59	Impairments in High-Frequency Transmission, Synaptic Vesicle Docking, and Synaptic Protein Distribution in the Hippocampus of BDNF Knockout Mice. Journal of Neuroscience, 1999, 19, 4972-4983.	3.6	426
60	Stable expression of a functional rat angiotensin II (AT1A) receptor in CHO-K1 cells: Rapid desensitization by angiotensin II. Molecular and Cellular Biochemistry, 1995, 146, 79-89.	3.1	46
61	Neurotrophic Signaling in Mood Disorders. , 0, , 411-445.		8