Robin R Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8677813/publications.pdf

Version: 2024-02-01

224 papers

17,647 citations

68 h-index 122 g-index

234 all docs

234 docs citations

times ranked

234

12184 citing authors

#	Article	IF	Citations
1	Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis. New England Journal of Medicine, 2008, 358, 2231-2239.	27.0	1,793
2	Retinal repair by transplantation of photoreceptor precursors. Nature, 2006, 444, 203-207.	27.8	999
3	Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet, The, 2004, 364, 2181-2187.	13.7	636
4	Long-Term Effect of Gene Therapy on Leber's Congenital Amaurosis. New England Journal of Medicine, 2015, 372, 1887-1897.	27.0	635
5	Restoration of vision after transplantation of photoreceptors. Nature, 2012, 485, 99-103.	27.8	447
6	Effective gene therapy with nonintegrating lentiviral vectors. Nature Medicine, 2006, 12, 348-353.	30.7	416
7	Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nature Biotechnology, 2013, 31, 741-747.	17.5	345
8	Retinal Ganglion Cell Apoptosis in Glaucoma Is Related to Intraocular Pressure and IOP-Induced Effects on Extracellular Matrix., 2005, 46, 175.		309
9	Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nature Genetics, 2000, 25, 306-310.	21.4	295
10	Repair of the degenerate retina by photoreceptor transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 354-359.	7.1	246
11	Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Human Molecular Genetics, 1996, 5, 591-594.	2.9	209
12	Efficient and Selective AAV2-Mediated Gene Transfer Directed to Human Vascular Endothelial Cells. Molecular Therapy, 2001, 4, 174-181.	8.2	204
13	Regulation of PCNA and Cyclin D1 Expression and Epithelial Morphogenesis by the ZO-1-Regulated Transcription Factor ZONAB/DbpA. Molecular and Cellular Biology, 2006, 26, 2387-2398.	2.3	195
14	In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Therapy, 2001, 8, 1665-1668.	4.5	186
15	The Drusenlike Phenotype in Aging <i>Ccl2 </i> -Knockout Mice Is Caused by an Accelerated Accumulation of Swollen Autofluorescent Subretinal Macrophages., 2009, 50, 5934.		186
16	Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors. Stem Cell Reports, 2017, 9, 820-837.	4.8	186
17	Lipid-Mediated Enhancement of Transfection by a Nonviral Integrin-Targeting Vector. Human Gene Therapy, 1998, 9, 575-585.	2.7	183
18	Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Therapy, 2007, 14, 292-303.	4.5	182

#	Article	IF	CITATIONS
19	Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology, 2018, 125, 1765-1775.	5.2	177
20	Comprehensive genomic access to vector integration in clinical gene therapy. Nature Medicine, 2009, 15, 1431-1436.	30.7	173
21	Novel antisense oligonucleotides targeting TGF- \hat{l}^2 inhibit in vivo scarring and improve surgical outcome. Gene Therapy, 2003, 10, 59-71.	4.5	163
22	Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nature Communications, 2018, 9, 4234.	12.8	158
23	Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Human Molecular Genetics, 2011, 20, 3161-3175.	2.9	157
24	Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Therapy, 2002, 9, 320-326.	4.5	149
25	Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Experimental Eye Research, 2008, 86, 601-611.	2.6	147
26	Retinal Structure and Function in Achromatopsia. Ophthalmology, 2014, 121, 234-245.	5.2	145
27	Autologous Transplantation of the Retinal Pigment Epithelium and Choroid in the Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2007, 114, 561-570.e2.	5.2	134
28	Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood, 2004, 104, 2714-2721.	1.4	132
29	Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell, 2018, 22, 834-849.	11.1	131
30	Gene therapy progress and prospects: the eye. Gene Therapy, 2006, 13, 1191-1197.	4.5	130
31	AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Molecular Therapy, 2003, 8, 188-195.	8.2	128
32	Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration. Gene Therapy, 2003, 10, 523-527.	4.5	127
33	Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Therapy, 2005, 12, 694-701.	4.5	119
34	Defining the Integration Capacity of Embryonic Stem Cell-Derived Photoreceptor Precursors. Stem Cells, 2012, 30, 1424-1435.	3.2	119
35	Adeno-Associated Virus Gene Transfer to Mouse Retina. Human Gene Therapy, 1998, 9, 81-86.	2.7	118
36	Gene replacement therapy in the retinal degeneration slow (rds)mouse: the effect on retinal degeneration following partial transduction of the retina. Human Molecular Genetics, 2001, 10, 2353-2361.	2.9	117

#	Article	IF	CITATIONS
37	Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Therapy, 2008, 15, 463-467.	4.5	117
38	Long-Term Survival of Photoreceptors Transplanted into the Adult Murine Neural Retina Requires Immune Modulation. Stem Cells, 2010, 28, 1997-2007.	3.2	117
39	Targeted Disruption of Outer Limiting Membrane Junctional Proteins (Crb1 and ZO-1) Increases Integration of Transplanted Photoreceptor Precursors into the Adult Wild-Type and Degenerating Retina. Cell Transplantation, 2010, 19, 487-503.	2.5	115
40	Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Therapy, 2010, 17, 117-131.	4.5	114
41	Cellular strategies for retinal repair by photoreceptor replacement. Progress in Retinal and Eye Research, 2015, 46, 31-66.	15.5	114
42	Gene Replacement Therapy Rescues Photoreceptor Degeneration in a Murine Model of Leber Congenital Amaurosis Lacking RPGRIP., 2005, 46, 3039.		113
43	AAV-mediated gene therapy for retinal disorders: from mouse to man. Gene Therapy, 2008, 15, 849-857.	4.5	111
44	AAV-Mediated Expression Targeting of Rod and Cone Photoreceptors with a Human Rhodopsin Kinase Promoter., 2007, 48, 3954.		107
45	Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Human Molecular Genetics, 2009, 18, 2099-2114.	2.9	107
46	Adult Ciliary Epithelial Cells, Previously Identified as Retinal Stem Cells with Potential for Retinal Repair, Fail to Differentiate into New Rod Photoreceptors. Stem Cells, 2010, 28, 1048-1059.	3.2	107
47	Effective Transplantation of Photoreceptor Precursor Cells Selected via Cell Surface Antigen Expression. Stem Cells, 2011, 29, 1391-1404.	3.2	107
48	The Tight Junction Associated Signalling Proteins ZO-1 and ZONAB Regulate Retinal Pigment Epithelium Homeostasis in Mice. PLoS ONE, 2010, 5, e15730.	2.5	104
49	Müller Glia Activation in Response to Inherited Retinal Degeneration Is Highly Varied and Disease-Specific. PLoS ONE, 2015, 10, e0120415.	2.5	103
50	Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells. Human Molecular Genetics, 2010, 19, 4545-4559.	2.9	96
51	Transplantation of Photoreceptor Precursors Isolated via a Cell Surface Biomarker Panel from Embryonic Stem Cell-Derived Self-Forming Retina. Stem Cells, 2015, 33, 2469-2482.	3.2	96
52	Transplanted Donor- or Stem Cell-Derived Cone Photoreceptors Can Both Integrate and Undergo Material Transfer in an Environment-Dependent Manner. Stem Cell Reports, 2018, 10, 406-421.	4.8	96
53	Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Current Opinion in Genetics and Development, 2001, 11, 307-316.	3.3	92
54	Advancing Therapeutic Strategies for Inherited Retinal Degeneration: Recommendations From the Monaciano Symposium. Investigative Ophthalmology and Visual Science, 2015, 56, 918-931.	3.3	92

#	Article	IF	Citations
55	HIF-1alpha and HIF-2alpha Are Differentially Activated in Distinct Cell Populations in Retinal Ischaemia. PLoS ONE, 2010, 5, e11103.	2.5	90
56	Isolation and Comparative Transcriptome Analysis of Human Fetal and iPSC-Derived Cone Photoreceptor Cells. Stem Cell Reports, 2017, 9, 1898-1915.	4.8	90
57	In Contrast to AAV-Mediated Cntf Expression, AAV-Mediated Gdnf Expression Enhances Gene Replacement Therapy in Rodent Models of Retinal Degeneration. Molecular Therapy, 2006, 14, 700-709.	8.2	87
58	Cell transplantation strategies for retinal repair. Progress in Brain Research, 2009, 175, 3-21.	1.4	87
59	Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy. Blood, 2002, 100, 2406-2413.	1.4	86
60	Ocular gene delivery using lentiviral vectors. Gene Therapy, 2012, 19, 145-153.	4.5	85
61	Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Research and Therapy, 2018, 9, 156.	5.5	85
62	Topographical characterization of cone photoreceptors and the area centralis of the canine retina. Molecular Vision, 2008, 14, 2518-27.	1.1	84
63	Comparative Analysis of Progenitor Cells Isolated from the Iris, Pars Plana, and Ciliary Body of the Adult Porcine Eye. Stem Cells, 2007, 25, 2430-2438.	3.2	82
64	Brief Report: Self-Organizing Neuroepithelium from Human Pluripotent Stem Cells Facilitates Derivation of Photoreceptors. Stem Cells, 2013, 31, 408-414.	3.2	82
65	Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration. Stem Cell Reports, 2017, 8, 1659-1674.	4.8	82
66	Intraocular Oxygen Distribution in Advanced Proliferative Diabetic Retinopathy. American Journal of Ophthalmology, 2011, 152, 406-412.e3.	3.3	81
67	A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency. Brain, 2018, 141, 2014-2031.	7.6	80
68	Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179. Nature Communications, 2015, 6, 6006.	12.8	79
69	Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. Journal of Gene Medicine, 2006, 8, 275-285.	2.8	78
70	Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. Journal of Gene Medicine, 2003, 5, 757-764.	2.8	77
71	Generation of Activated Sialoadhesin-Positive Microglia during Retinal Degeneration., 2003, 44, 2229.		74
72	Clinical characterisation of a family with retinal dystrophy caused by mutation in the Mertk gene. British Journal of Ophthalmology, 2006, 90, 718-723.	3.9	72

#	Article	IF	CITATIONS
73	Prospects for retinal gene replacement therapy. Trends in Genetics, 2009, 25, 156-165.	6.7	71
74	Long-Term Preservation of Cones and Improvement in Visual Function Following Gene Therapy in a Mouse Model of Leber Congenital Amaurosis Caused by Guanylate Cyclase-1 Deficiency. Human Gene Therapy, 2011, 22, 1179-1190.	2.7	70
75	Hsp90 inhibition protects against inherited retinal degeneration. Human Molecular Genetics, 2014, 23, 2164-2175.	2.9	70
76	A Prospective Longitudinal Study of Retinal Structure and Function in Achromatopsia., 2014, 55, 5733.		68
77	Migration, Integration and Maturation of Photoreceptor Precursors Following Transplantation in the Mouse Retina. Stem Cells and Development, 2014, 23, 941-954.	2.1	68
78	High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice. Cell Death and Differentiation, 1998, 5, 156-162.	11.2	67
79	An Alternative Promoter in the Mouse Major Histocompatibility Complex Class II I-A \hat{I}^2 Gene: Implications for the Origin of CpG Islands. Molecular and Cellular Biology, 1998, 18, 4433-4443.	2.3	65
80	Isolation of Human Photoreceptor Precursors via a Cell Surface Marker Panel from Stem Cell-Derived Retinal Organoids and Fetal Retinae. Stem Cells, 2018, 36, 709-722.	3.2	65
81	Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Reports, 2021, 35, 109022.	6.4	65
82	Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Therapy, 2016, 23, 857-862.	4.5	64
83	Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism. Experimental Eye Research, 2004, 78, 1077-1084.	2.6	61
84	Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Therapy, 2011, 18, 53-61.	4.5	61
85	Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Therapy, 2016, 23, 196-204.	4.5	61
86	EIAV vector-mediated delivery of endostatin or angiostatin inhibits angiogenesis and vascular hyperpermeability in experimental CNV. Gene Therapy, 2006, 13, 1153-1165.	4.5	59
87	Marked inhibition of retinal neovascularization in rats following soluble-flt-1 gene transfer. Journal of Gene Medicine, 2004, 6, 992-1002.	2.8	57
88	Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Therapy, 2003, 10, 1336-1344.	4.5	56
89	Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science and Technology, 2020, 9, 2.	2.2	56
90	Subretinal delivery of adenoâ€associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. Journal of Gene Medicine, 2009, 11, 486-497.	2.8	55

#	Article	IF	CITATIONS
91	Permanent partial phenotypic correction and tolerance in a mouse model of hemophilia B by stem cell gene delivery of human factor IX. Gene Therapy, 2006, 13, 117-126.	4.5	54
92	Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling. PLoS ONE, 2012, 7, e35551.	2.5	54
93	Kinetics of transgene expression in mouse retina following sub-retinal injection of recombinant adeno-associated virus. Vision Research, 2002, 42, 541-549.	1.4	53
94	Subconjunctival bevacizumab induces regression of corneal neovascularisation: a pilot randomised placebo-controlled double-masked trial. British Journal of Ophthalmology, 2013, 97, 28-32.	3.9	53
95	RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Therapy, 2013, 20, 545-555.	4.5	53
96	Assessment of AAV Vector Tropisms for Mouse and Human Pluripotent Stem Cell–Derived RPE and Photoreceptor Cells. Human Gene Therapy, 2018, 29, 1124-1139.	2.7	53
97	Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Therapy, 2012, 19, 154-161.	4.5	52
98	Retinal gene therapy. British Medical Bulletin, 2018, 126, 13-25.	6.9	52
99	Gene Therapy for Glaucoma by Ciliary Body Aquaporin 1 Disruption Using CRISPR-Cas9. Molecular Therapy, 2020, 28, 820-829.	8.2	52
100	AAV-mediated knockdown of Peripherin-2 in vivo using miRNA-based hairpins. Gene Therapy, 2010, 17, 486-493.	4.5	51
101	Lentiviral Vector Integration Profiles Differ in Rodent Postmitotic Tissues. Molecular Therapy, 2011, 19, 703-710.	8.2	51
102	Local Administration of an Adeno-associated Viral Vector Expressing IL-10 Reduces Monocyte Infiltration and Subsequent Photoreceptor Damage during Experimental Autoimmune Uveitis. Molecular Therapy, 2005, 12, 369-373.	8.2	50
103	Local gene therapy with CTLA4-immunoglobulin fusion protein in experimental allergic encephalomyelitis. European Journal of Immunology, 1998, 28, 3904-3916.	2.9	48
104	High-Titer Recombinant Adeno-Associated Virus Production from Replicating Amplicons and Herpes Vectors Deleted for Glycoprotein H. Human Gene Therapy, 1999, 10, 2527-2537.	2.7	47
105	The Future Looks Brighter After 25 Years of Retinal Gene Therapy. Human Gene Therapy, 2017, 28, 982-987.	2.7	46
106	Gene therapy for ocular angiogenesis. Clinical Science, 2003, 104, 561-575.	4.3	45
107	Assessment and In Vivo Scoring of Murine Experimental Autoimmune Uveoretinitis Using Optical Coherence Tomography. PLoS ONE, 2013, 8, e63002.	2.5	45
108	Inhibition of Ocular Neovascularization by Hedgehog Blockade. Molecular Therapy, 2006, 13, 573-579.	8.2	44

#	Article	IF	CITATIONS
109	The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors. Human Molecular Genetics, 2015, 24, 128-141.	2.9	44
110	Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration. Experimental Eye Research, 2013, 107, 80-87.	2.6	42
111	Flow cytometric analysis of inflammatory and resident myeloid populations in mouse ocular inflammatory models. Experimental Eye Research, 2016, 151, 160-170.	2.6	42
112	Nanotubeâ€like processes facilitate material transfer between photoreceptors. EMBO Reports, 2021, 22, e53732.	4.5	42
113	Multimodal analysis of ocular inflammation using endotoxin-induced uveitis. DMM Disease Models and Mechanisms, 2016, 9, 473-81.	2.4	41
114	Lentiviral-vector-mediated expression of murine IL-1 receptor antagonist or IL-10 reduces the severity of endotoxin-induced uveitis. Gene Therapy, 2008, 15, 1478-1488.	4.5	39
115	Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 19-24.	2.4	39
116	Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Human Molecular Genetics, 2017, 26, ddw387.	2.9	39
117	Prevention of Photoreceptor Cell Loss in a Cln6 Mouse Model of Batten Disease Requires CLN6 Gene Transfer to Bipolar Cells. Molecular Therapy, 2018, 26, 1343-1353.	8.2	39
118	GFAP-Driven GFP Expression in Activated Mouse $M\tilde{A}^{1/4}$ ller Glial Cells Aligning Retinal Blood Vessels Following Intravitreal Injection of AAV2/6 Vectors. PLoS ONE, 2010, 5, e12387.	2.5	39
119	Hypoxia-regulated transgene expression in experimental retinal and choroidal neovascularization. Gene Therapy, 2003, 10, 1049-1054.	4.5	38
120	CNTF gene transfer protects ganglion cells in rat retinae undergoing focal injury and branch vessel occlusion. Experimental Eye Research, 2006, 83, 1118-1127.	2.6	38
121	Success in sight: The eyes have it! Ocular gene therapy trials for LCA look promising. Gene Therapy, 2008, 15, 1191-1192.	4. 5	37
122	Induction of Replication in Human Corneal Endothelial Cells by E2F2 Transcription Factor cDNA Transfer., 2005, 46, 3597.		36
123	Manipulation of the Recipient Retinal Environment by Ectopic Expression of Neurotrophic Growth Factors Can Improve Transplanted Photoreceptor Integration and Survival. Cell Transplantation, 2012, 21, 871-887.	2.5	35
124	Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development (Cambridge), 2020, 147, .	2.5	34
125	Absence of Chx 10 Causes Neural Progenitors to Persist in the Adult Retina., 2006, 47, 386.		33
126	Endogenous Erythropoietin Protects Neuroretinal Function in Ischemic Retinopathy. American Journal of Pathology, 2012, 180, 1726-1739.	3.8	33

#	Article	IF	Citations
127	IL-4 Regulates Specific Arg-1+ Macrophage sFlt-1–Mediated Inhibition of Angiogenesis. American Journal of Pathology, 2015, 185, 2324-2335.	3.8	33
128	Annexin-A1 restricts Th17 cells and attenuates the severity of autoimmune disease. Journal of Autoimmunity, 2015, 58, 1-11.	6.5	32
129	CD200R signaling inhibits pro-angiogenic gene expression by macrophages and suppresses choroidal neovascularization. Scientific Reports, 2013, 3, 3072.	3.3	31
130	Gene Therapy Targeting the Inner Retina Rescues the Retinal Phenotype in a Mouse Model of CLN3 Batten Disease. Human Gene Therapy, 2020, 31, 709-718.	2.7	31
131	Successful Gene Therapy in Older Rpe65-Deficient Dogs Following Subretinal Injection of an Adeno-Associated Vector Expressing <i>RPE65</i> . Human Gene Therapy, 2013, 24, 883-893.	2.7	29
132	Dominant Cone-Rod Dystrophy: A Mouse Model Generated by Gene Targeting of the GCAP1/Guca1a Gene. PLoS ONE, 2011, 6, e18089.	2.5	28
133	Leber Congenital Amaurosis Associated with AIPL1: Challenges in Ascribing Disease Causation, Clinical Findings, and Implications for Gene Therapy. PLoS ONE, 2012, 7, e32330.	2.5	28
134	Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration. Current Stem Cell Reports, 2017, 3, 112-123.	1.6	27
135	A peptide encoded by exon 6 of VEGF (EG3306) inhibits VEGF-induced angiogenesis in vitro and ischaemic retinal neovascularisation in vivo. Biochemical and Biophysical Research Communications, 2003, 302, 793-799.	2.1	26
136	Induced pluripotent stem cell technology for generating photoreceptors. Regenerative Medicine, 2011, 6, 469-479.	1.7	26
137	Linkage Mapping around the Ragged (Ra) and Wasted (wst) Loci on Distal Mouse Chromosome 2. Genomics, 1994, 20, 94-98.	2.9	25
138	Neuroprotective Gene Therapy for the Treatment of Inherited Retinal Degeneration. Current Gene Therapy, 2007, 7, 434-445.	2.0	25
139	Enhanced Ccl2-Ccr2 signaling drives more severe choroidal neovascularization with aging. Neurobiology of Aging, 2016, 40, 110-119.	3.1	24
140	Absence of p53 delays apoptotic photoreceptor cell death in the rds mouse. Current Eye Research, 1998, 17, 917-923.	1.5	23
141	Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development. Development (Cambridge), 2012, 139, 2340-2350.	2.5	23
142	Experimental gene transfer to the corneal endothelium. Experimental Eye Research, 2012, 95, 54-59.	2.6	23
143	Educational paper. European Journal of Pediatrics, 2012, 171, 757-765.	2.7	23
144	Comparative Analysis of the Retinal Potential of Embryonic Stem Cells and Amniotic Fluid-Derived Stem Cells. Stem Cells and Development, 2011, 20, 851-863.	2.1	22

#	Article	IF	Citations
145	DIY eye. Nature, 2011, 472, 42-43.	27.8	22
146	Neonatal brain-directed gene therapy rescues a mouse model of neurodegenerative CLN6 Batten disease. Human Molecular Genetics, 2019, 28, 3867-3879.	2.9	21
147	Effect of Overexpressing the Transcription Factor E2F2 on Cell Cycle Progression in Rabbit Corneal Endothelial Cells. Investigative Ophthalmology and Visual Science, 2004, 45, 1340-1348.	3.3	20
148	Human stem cell-derived retinal epithelial cells activate complement via collectin 11 in response to stress. Scientific Reports, 2017, 7, 14625.	3.3	20
149	Detailed clinical characterisation, unique features and natural history of autosomal recessive <i>RDH12</i> -associated retinal degeneration. British Journal of Ophthalmology, 2019, 103, bjophthalmol-2018-313580.	3.9	20
150	Development of Stem Cell Therapies for Retinal Degeneration. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035683.	5.5	20
151	Optimization of recombinant adeno-associated virus production using an herpes simplex virus amplicon system. Journal of Virological Methods, 2001, 96, 97-105.	2.1	19
152	Dimethylarginine dimethylaminohydrolase-2 deficiency promotes vascular regeneration and attenuates pathological angiogenesis. Experimental Eye Research, 2016, 147, 148-155.	2.6	19
153	Pluripotent stem cells and their utility in treating photoreceptor degenerations. Progress in Brain Research, 2017, 231, 191-223.	1.4	19
154	In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations. Gene Therapy, 2017, 24, 810-818.	4.5	19
155	Development of a Gene Therapy Vector for <i>RDH12</i> -Associated Retinal Dystrophy. Human Gene Therapy, 2019, 30, 1325-1335.	2.7	19
156	Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin. Stem Cell Reports, 2022, 17, 1476-1492.	4.8	19
157	Validation of a Vision-Guided Mobility Assessment for <i>RPE65</i> -Associated Retinal Dystrophy. Translational Vision Science and Technology, 2020, 9, 5.	2.2	18
158	Pharmacologic activation of autophagy without direct mTOR inhibition as a therapeutic strategy for treating dry macular degeneration. Aging, 2021, 13, 10866-10890.	3.1	18
159	Gene Transfer of An Engineered Zinc Finger Protein Enhances the Anti-angiogenic Defense System. Molecular Therapy, 2007, 15, 1917-1923.	8.2	17
160	Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material. , 2019, 60, 3468.		17
161	RNAiâ€mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Mù⁄4ller glial cell hypertrophy in progressive retinal degeneration. Glia, 2021, 69, 2272-2290.	4.9	17
162	Cd59a deficiency in mice leads to preferential innate immune activation in the retinal pigment epithelium–choroid with age. Neurobiology of Aging, 2015, 36, 2637-2648.	3.1	16

#	Article	IF	CITATIONS
163	Early-Onset Progressive Degeneration of the Area Centralis in RPE65-Deficient Dogs., 2017, 58, 3268.		16
164	RPGR isoform imbalance causes ciliary defects due to exon ORF15 mutations in X-linked retinitis pigmentosa (XLRP). Human Molecular Genetics, 2021, 29, 3706-3716.	2.9	16
165	Characterisation of a C1qtnf5 Ser163Arg Knock-In Mouse Model of Late-Onset Retinal Macular Degeneration. PLoS ONE, 2011, 6, e27433.	2.5	16
166	Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization. PLoS ONE, 2017, 12, e0179759.	2.5	16
167	An immune response after intraocular administration of an adenoviral vector containing a beta galactosidase reporter gene slows retinal degeneration in the rd mouse. British Journal of Ophthalmology, 2001, 85, 341-344.	3.9	15
168	Absence of ocular malignant transformation after sub-retinal delivery of rAAV2/2 or integrating lentiviral vectors in p53-deficient mice. Gene Therapy, 2012, 19, 182-188.	4.5	15
169	Nature of the Visual Loss in Observers With Leber's Congenital Amaurosis Caused by Specific Mutations in RPE65. Investigative Ophthalmology and Visual Science, 2014, 55, 6817-6828.	3.3	15
170	Stabilization of myeloid-derived HIFs promotes vascular regeneration in retinal ischemia. Angiogenesis, 2020, 23, 83-90.	7.2	15
171	Dark-Adaptation Functions in Molecularly Confirmed Achromatopsia and the Implications for Assessment in Retinal Therapy Trials. , 2014, 55, 6340.		14
172	Spectral sensitivity measurements reveal partial success in restoring missing rod function with gene therapy. Journal of Vision, 2015, 15, 20.	0.3	14
173	Gene Therapy Approaches to Treat the Neurodegeneration and Visual Failure in Neuronal Ceroid Lipofuscinoses. Advances in Experimental Medicine and Biology, 2018, 1074, 91-99.	1.6	14
174	Sustained and Widespread Gene Delivery to the Corneal Epithelium via In Situ Transduction of Limbal Epithelial Stem Cells, Using Lentiviral and Adeno-Associated Viral Vectors. Human Gene Therapy, 2018, 29, 1140-1152.	2.7	14
175	Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Frontiers in Cell and Developmental Biology, 2021, 9, 700276.	3.7	14
176	Improvement of neuronal visual responses in the superior colliculus in Prph2Rd2/Rd2 mice following gene therapy. Molecular and Cellular Neurosciences, 2004, 25, 103-110.	2.2	13
177	Gene Therapy for Noninfectious Uveitis. Ocular Immunology and Inflammation, 2012, 20, 394-405.	1.8	13
178	Induced Pluripotent Stem Cell Therapies for Degenerative Disease of the Outer Retina: Disease Modeling and Cell Replacement. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 240-252.	1.4	13
179	Antioxidant and lipid supplementation improve the development of photoreceptor outer segments in pluripotent stem cell-derived retinal organoids. Stem Cell Reports, 2022, 17, 775-788.	4.8	13
180	Ocular gene therapy: introduction to the special issue. Gene Therapy, 2012, 19, 119-120.	4.5	12

#	Article	IF	CITATIONS
181	Late neuroprogenitors contribute to normal retinal vascular development in a <i>Hif2a</i> -dependent manner. Development (Cambridge), 2018, 145, .	2.5	12
182	Activation of autophagy reverses progressive and deleterious protein aggregation in PRPF31 patientâ€induced pluripotent stem cellâ€derived retinal pigment epithelium cells. Clinical and Translational Medicine, 2022, 12, e759.	4.0	12
183	Ocular gene therapy trials due to report this year; Keeping an eye on clinical trials in 2008. Gene Therapy, 2008, 15, 633-634.	4.5	11
184	Gene Therapy for Retinal Dystrophies: Twenty Years in the Making. Human Gene Therapy, 2012, 23, 337-339.	2.7	11
185	Unlocking the Potential for Endogenous Repair to Restore Sight. Neuron, 2018, 100, 524-526.	8.1	11
186	Experimental gene therapies for the NCLs. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165772.	3.8	11
187	Isolation and characterisation of neural progenitor cells from the adult Chx10orJ/orJ central neural retina. Molecular and Cellular Neurosciences, 2008, 38, 359-373.	2.2	10
188	Prospects for Gene Therapy. Novartis Foundation Symposium, 2008, , 165-176.	1.1	10
189	Gene Augmentation Trials Using the Rpe65-Deficient Dog: Contributions Towards Development and Refinement of Human Clinical Trials. Advances in Experimental Medicine and Biology, 2012, 723, 177-182.	1.6	10
190	Regulating cell-based regenerative medicine: the challenges ahead. Regenerative Medicine, 2014, 9, 81-87.	1.7	10
191	Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Scientific Reports, 2017, 7, 40830.	3.3	10
192	AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity. Human Molecular Genetics, 2020, 29, 1310-1318.	2.9	10
193	Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Reports, 2021, 36, 109461.	6.4	9
194	Generation of small mutation in large genomic fragments by homologous recombination: description of the technique and examples of its use. Nucleic Acids Research, 1990, 18, 6247-6251.	14.5	8
195	Effect of Steroidal and Non-Steroidal Drugs on the Microglia Activation Pattern and the Course of Degeneration in the Retinal Degeneration Slow Mouse. Ophthalmic Research, 2005, 37, 72-82.	1.9	8
196	Debate on Germline Gene Editing. Human Gene Therapy Methods, 2016, 27, 135-142.	2.1	8
197	Augmenting Endogenous Levels of Retinal Annexin A1 Suppresses Uveitis in Mice. Translational Vision Science and Technology, 2017, 6, 10.	2.2	8
198	Conditional Dicer1 depletion using Chrnb4-Cre leads to cone cell death and impaired photopic vision. Scientific Reports, 2019, 9, 2314.	3.3	8

#	Article	IF	Citations
199	Modulation of Contact Inhibition by ZO-1/ZONAB Gene Transferâ€"A New Strategy to Increase the Endothelial Cell Density of Corneal Grafts. , 2019, 60, 3170.		7
200	Therapy may yet stem from cells in the retina. British Journal of Ophthalmology, 2003, 87, 1058-1059.	3.9	6
201	Local Vs. Systemic Mononuclear Phagocytes in Age-Related Macular Degeneration and Their Regulation by CCL2–CCR2 and CX3CL1–CX3CR1 Chemokine Signalling. Advances in Experimental Medicine and Biology, 2012, 723, 17-22.	1.6	6
202	Prospects for gene therapy. Novartis Foundation Symposium, 2004, 255, 165-72; discussion 173-8.	1.1	6
203	The Relevance of Chemokine Signalling in Modulating Inherited and Age-Related Retinal Degenerations. Advances in Experimental Medicine and Biology, 2014, 801, 427-433.	1.6	5
204	High-Titer Stocks of Adeno-Associated Virus from Replicating Amplicons and Herpes Vectors. , 2002, 69, 445-460.		4
205	Gene therapy for inherited childhood blindness shows promise. Expert Review of Ophthalmology, 2008, 3, 357-359.	0.6	3
206	Impact of BREXIT on UK Gene and Cell Therapy: The Need for Continued Pan-European Collaboration. Human Gene Therapy, 2016, 27, 653-655.	2.7	3
207	Gene therapy for Leber congenital amaurosis. Expert Review of Ophthalmology, 2018, 13, 11-15.	0.6	3
208	Macrophage Presentation of Endogenous Self-Protein: The MHC Class II Presentation Pathway Is Not Accessible to Intracellular C5 or $\hat{l}\pm 1$ -Antitrypsin. Cellular Immunology, 1996, 167, 230-240.	3.0	2
209	A Comprehensive Study of the Retinal Phenotype of Rpe65-Deficient Dogs. Cells, 2021, 10, 115.	4.1	2
210	Isolation and Culture of Adult Ciliary Epithelial Cells, Previously Identified as Retinal Stem Cells, and Retinal Progenitor Cells. Current Protocols in Stem Cell Biology, 2011, 19, Unit 1H.4.	3.0	2
211	Intravitreal administration of recombinant human opticin protects against hyperoxia-induced pre-retinal neovascularization. Experimental Eye Research, 2022, 215, 108908.	2.6	2
212	mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice. Journal of Biological Chemistry, 2022, 298, 101944.	3.4	2
213	Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Human Molecular Genetics, 2010, 19, 735-735.	2.9	1
214	Stem cell therapy for blindness: new developments and implications for the future. Expert Review of Ophthalmology, 2011, 6, 1-3.	0.6	1
215	Investigation of SLA4A3 as a candidate gene for human retinal disease. Journal of Negative Results in BioMedicine, 2016, 15, 11.	1.4	1
216	Celebrating 25 Years of the European Society of Gene and Cell Therapy. Human Gene Therapy, 2017, 28, 939-939.	2.7	1

#	Article	IF	CITATIONS
217	A Tribute to Barrie J. Carter. Human Gene Therapy, 2020, 31, 491-493.	2.7	1
218	Control of Choroidal Neovascularisation by Local Gene Transfer of Soluble VEGF Receptor sFlt-1. Clinical Science, 2003, 104, 62P-62P.	0.0	0
219	Retinal cell transplantation: prospects for the future. Expert Review of Ophthalmology, 2012, 7, 99-101.	0.6	o
220	Reply to comment on "Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration―by Luhmann etÂal. (Exp. Eye Res. 107, February 2013, 80–87). Experimental Eye Research, 2013, 111, 136.	2.6	0
221	Transcriptional regulation of cone photoreceptor development. IBRO Reports, 2019, 6, S20-S21.	0.3	0
222	Retinal Gene Therapy: Expansion in Clinical Trials Drives the Need for Further Preclinical Research. Human Gene Therapy, 2020, 31, 701-702.	2.7	0
223	Comprehensive and Unbiased Integration Site Analysis in Clinical Gene Therapy Blood, 2008, 112, 2351-2351.	1.4	0
224	Tracking neuronal motility in live murine retinal explants. STAR Protocols, 2021, 2, 101008.	1.2	0