Daniel A Lawrence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8677582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compartmentalized Actions of the Plasminogen Activator Inhibitors, PAI-1 and Nsp, in Ischemic Stroke. Translational Stroke Research, 2022, 13, 801-815.	4.2	9
2	Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease. Seminars in Thrombosis and Hemostasis, 2022, 48, 288-300.	2.7	5
3	Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Scientific Reports, 2021, 11, 1580.	3.3	175
4	Longitudinal Assessment of Cytokine Expression and Plasminogen Activation in Hantavirus Cardiopulmonary Syndrome Reveals Immune Regulatory Dysfunction in End-Stage Disease. Viruses, 2021, 13, 1597.	3.3	4
5	Deep mutational scanning of the plasminogen activator inhibitor-1 functional landscape. Scientific Reports, 2021, 11, 18827.	3.3	8
6	Heparin and Arginine Based Plasmin Nanoformulation for Ischemic Stroke Therapy. International Journal of Molecular Sciences, 2021, 22, 11477.	4.1	7
7	High-affinity binding of plasminogen-activator inhibitor 1 complexes to LDL receptor–related protein 1 requires lysines 80, 88, and 207. Journal of Biological Chemistry, 2020, 295, 212-222.	3.4	18
8	A high-fat diet delays plasmin generation in a thrombomodulin-dependent manner in mice. Blood, 2020, 135, 1704-1717.	1.4	31
9	First Use of a Novel Inhibitor of Plasminogen Activator Inhibitor 1 (MDI-2268) in Animal Model of Deep Venous Thrombosis and Attempts of Combined Antithrombotic Therapy. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2020, 8, 309-310.	1.6	1
10	Drug Targeting of Plasminogen Activator Inhibitor-1 Inhibits Metabolic Dysfunction and Atherosclerosis in a Murine Model of Metabolic Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1479-1490.	2.4	32
11	PAI-1 augments mucosal damage in colitis. Science Translational Medicine, 2019, 11, .	12.4	44
12	Dual-reporter high-throughput screen for small-molecule in vivo inhibitors of plasminogen activator inhibitor type-1 yields a clinical lead candidate. Journal of Biological Chemistry, 2019, 294, 1464-1477.	3.4	9
13	Gene Expression and Function of Plasminogen Activator Inhibitor-1. , 2019, , 21-29.		4
14	Plasminogen Activator Inhibitor-1 Reduces Tissue-Type Plasminogen Activator–Dependent Fibrinolysis and Intrahepatic Hemorrhage in Experimental Acetaminophen Overdose. American Journal of Pathology, 2018, 188, 1204-1212.	3.8	13
15	Traumatic Brain Injury Leads to Accelerated Atherosclerosis in Apolipoprotein E Deficient Mice. Scientific Reports, 2018, 8, 5639.	3.3	16
16	Update on the electrolytic IVC model for preâ€clinical studies of venous thrombosis. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 266-273.	2.3	14
17	CpaA Is a Clycan-Specific Adamalysin-like Protease Secreted by Acinetobacter baumannii That Inactivates Coagulation Factor XII. MBio, 2018, 9,	4.1	45
18	Upregulation of P2Y2R, Active uPA, and PAI-1 Are Essential Components of Hantavirus Cardiopulmonary Syndrome. Frontiers in Cellular and Infection Microbiology, 2018, 8, 169.	3.9	18

#	Article	IF	CITATIONS
19	Characterization of Tissue Plasminogen Activator Expression and Trafficking in the Adult Murine Brain. ENeuro, 2018, 5, ENEURO.0119-18.2018.	1.9	13
20	Slow fusion pore expansion creates a unique reaction chamber for co-packaged cargo. Journal of General Physiology, 2017, 149, 921-934.	1.9	15
21	Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta Neuropathologica, 2017, 134, 585-604.	7.7	82
22	Randomized assessment of imatinib in patients with acute ischaemic stroke treated with intravenous thrombolysis. Journal of Internal Medicine, 2017, 281, 273-283.	6.0	49
23	tPA Modulation of the Blood–Brain Barrier: A Unifying Explanation for the Pleiotropic Effects of tPA in the CNS. Seminars in Thrombosis and Hemostasis, 2017, 43, 154-168.	2.7	31
24	Neuroserpin Differentiates Between Forms of Tissue Type Plasminogen Activator via pH Dependent Deacylation. Frontiers in Cellular Neuroscience, 2016, 10, 154.	3.7	4
25	Editorial: The Role of the Plasminogen Activating System in Neurobiology. Frontiers in Cellular Neuroscience, 2016, 10, 222.	3.7	4
26	Passenger mutations and aberrant gene expression in congenic tissue plasminogen activatorâ€deficient mouse strains. Journal of Thrombosis and Haemostasis, 2016, 14, 1618-1628.	3.8	11
27	Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1. Scientific Reports, 2016, 6, 36462.	3.3	8
28	P2â€070: SEEAB ³ : A Novel Method for Volumetric Analysis of Amyloid Plaques. Alzheimer's and Dementia, 2016, 12, P634.	0.8	0
29	A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo. Blood, 2016, 127, 1085-1096.	1.4	33
30	Pharmacological targeting of the PDGF-CC signaling pathway for blood–brain barrier restoration in neurological disorders. , 2016, 167, 108-119.		35
31	Presymptomatic activation of the PDGF-CC pathway accelerates onset of ALS neurodegeneration. Acta Neuropathologica, 2016, 131, 453-464.	7.7	33
32	Mechanisms Underlying Astrocyte Endfeet Swelling in Stroke. Acta Neurochirurgica Supplementum, 2016, 121, 19-22.	1.0	18
33	Imatinib treatment reduces brain injury in a murine model of traumatic brain injury. Frontiers in Cellular Neuroscience, 2015, 9, 385.	3.7	38
34	Plasminogen Activator Inhibitor-1 Inhibits Angiogenic Signaling by Uncoupling Vascular Endothelial Growth Factor Receptor-2-α _V β ₃ Integrin Cross Talk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 111-120.	2.4	64
35	Identification of a neurovascular signaling pathway regulating seizures in mice. Annals of Clinical and Translational Neurology, 2015, 2, 722-738.	3.7	35
36	Elevated Cytokines, Thrombin and PAI-1 in Severe HCPS Patients Due to Sin Nombre Virus. Viruses, 2015, 7, 559-589.	3.3	26

#	Article	IF	CITATIONS
37	Vitronectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibroblasts. Laboratory Investigation, 2014, 94, 633-644.	3.7	22
38	A plasminogen activator inhibitor typeÂ1 mutant retards diabetic nephropathy in <i>db</i> / <i>db</i> mice by protecting podocytes. Experimental Physiology, 2014, 99, 802-815.	2.0	15
39	α2 Antiplasmin and Microvascular Thrombosis in Ischemic Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2522-2523.	2.4	8
40	Plasminogen activatorâ€1 overexpression decreases experimental postthrombotic vein wall fibrosis by a nonâ€vitronectinâ€dependent mechanism. Journal of Thrombosis and Haemostasis, 2014, 12, 1353-1363.	3.8	32
41	Low-molecular-weight heparin modulates vein wallÂfibrotic response in a plasminogen activator inhibitor 1-dependent manner. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2014, 2, 441-450.e1.	1.6	15
42	Increased stroke size following MCA occlusion in a mouse model of sickle cell disease. Blood, 2014, 123, 1965-1967.	1.4	9
43	Rosuvastatin reduced deep vein thrombosis in ApoE gene deleted mice with hyperlipidemia through non-lipid lowering effects. Thrombosis Research, 2013, 131, 268-276.	1.7	42
44	Plasminogen Activator Inhibitor-1 Mitigates Brain Injury in a Rat Model of Infection-Sensitized Neonatal Hypoxia-Ischemia. Cerebral Cortex, 2013, 23, 1218-1229.	2.9	36
45	Taming Neonatal Hypoxic–Ischemic Brain Injury by Intranasal Delivery of Plasminogen Activator Inhibitor-1. Stroke, 2013, 44, 2623-2627.	2.0	17
46	Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4941-9.	7.1	27
47	Thrombomodulin and the Brain: Past, Present, and Future. Neurology, 2012, 78, 1280-1281.	1.1	0
48	Myeloid Mineralocorticoid Receptor During Experimental Ischemic Stroke: Effects of Model and Sex. Journal of the American Heart Association, 2012, 1, e002584.	3.7	20
49	The tissue-type plasminogen activator–plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans. Brain, 2012, 135, 3251-3264.	7.6	75
50	The functional dissonance of platelets. Blood, 2012, 120, 1154-1155.	1.4	1
51	uPA Binding to PAI-1 Induces Corneal Myofibroblast Differentiation on Vitronectin. , 2012, 53, 4765.		14
52	Association of Alzheimer Disease Pathology with Abnormal Lipid Metabolism: The Hisayama Study. Neurology, 2012, 78, 1280-1280.	1.1	8
53	Platelet-Derived Growth Factor C Deficiency in C57BL/6 Mice Leads to Abnormal Cerebral Vascularization, Loss of Neuroependymal Integrity, and Ventricular Abnormalities. American Journal of Pathology, 2012, 180, 1136-1144.	3.8	34
54	Impaired fibrinolytic system in ApoE gene-deleted mice with hyperlipidemia augments deep vein thrombosis. Journal of Vascular Surgery, 2012, 55, 815-822.	1.1	38

#	Article	IF	CITATIONS
55	PAIâ€1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury. Journal of Pathology, 2012, 228, 170-180.	4.5	64
56	Matrix-Bound PAI-1 Supports Cell Blebbing via RhoA/ROCK1 Signaling. PLoS ONE, 2012, 7, e32204.	2.5	29
57	Abstract 413: A Dominant Negative Mutant of Plasminogen Activator Inhibitor-1 Does Not Inhibit Intimal Hyperplasia After Balloon Coronary Angioplasty in Pigs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	2.4	0
58	Proteomic Analysis of the Vibrio cholerae Type II Secretome Reveals New Proteins, Including Three Related Serine Proteases. Journal of Biological Chemistry, 2011, 286, 16555-16566.	3.4	106
59	Tissue factor and obesity, a two-way street. Nature Medicine, 2011, 17, 1343-1344.	30.7	6
60	The vitronectin-binding function of PAI-1 exacerbates lung fibrosis in mice. Blood, 2011, 118, 2313-2321.	1.4	49
61	The thrombomodulin analog Solulin promotes reperfusion and reduces infarct volume in a thrombotic stroke model. Journal of Thrombosis and Haemostasis, 2011, 9, 1174-1182.	3.8	29
62	Multifaceted Role of Plasminogen Activator Inhibitor-1 in Regulating Early Remodeling of Vein Bypass Grafts. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1781-1787.	2.4	33
63	Development of Inhibitors of Plasminogen Activator Inhibitor-1. Methods in Enzymology, 2011, 501, 177-207.	1.0	8
64	Sometimes a cigar is just a cigar. Blood, 2010, 116, 1394-1395.	1.4	0
65	Novel bis-arylsulfonamides and aryl sulfonimides as inactivators of plasminogen activator inhibitor-1 (PAI-1). Bioorganic and Medicinal Chemistry Letters, 2010, 20, 966-970.	2.2	10
66	Plasminogen activator inhibitor-1 and vitronectin expression level and stoichiometry regulate vascular smooth muscle cell migration through physiological collagen matrices. Journal of Thrombosis and Haemostasis, 2010, 8, 1847-1854.	3.8	35
67	Low Density Lipoprotein Receptor-related Protein-1 (LRP1) Regulates Thrombospondin-2 (TSP2) Enhancement of Notch3 Signaling. Journal of Biological Chemistry, 2010, 285, 23047-23055.	3.4	38
68	Characterization of a Novel Class of Polyphenolic Inhibitors of Plasminogen Activator Inhibitor-1. Journal of Biological Chemistry, 2010, 285, 7892-7902.	3.4	37
69	Antimetastatic Potential of PAI-1–Specific RNA Aptamers. Oligonucleotides, 2009, 19, 117-128.	2.7	46
70	Therapeutic Administration of Plasminogen Activator Inhibitor-1 Prevents Hypoxic-Ischemic Brain Injury in Newborns. Journal of Neuroscience, 2009, 29, 8669-8674.	3.6	44
71	Recombinant Plasminogen Activator Inhibitor-1 Inhibits Intimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1565-1570.	2.4	22
72	Mechanisms underlying the antifibrotic properties of noninhibitory PAI-1 (PAI-1R) in experimental nephritis. American Journal of Physiology - Renal Physiology, 2009, 297, F1045-F1054.	2.7	20

#	Article	IF	CITATIONS
73	Tissue plasminogen activator-mediated PDGF signaling and neurovascular coupling in stroke. Journal of Thrombosis and Haemostasis, 2009, 7, 155-158.	3.8	31
74	Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. Journal of Clinical Investigation, 2009, 119, 1136-1149.	8.2	104
75	Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nature Medicine, 2008, 14, 731-737.	30.7	405
76	Tissueâ€ŧype plasminogen activator requires a coâ€receptor to enhance NMDA receptor function. Journal of Neurochemistry, 2008, 107, 1091-1101.	3.9	106
77	PAI-1 and functional blockade of SNAI1 in breast cancer cell migration. Breast Cancer Research, 2008, 10, R100.	5.0	23
78	A PAI-1 Mutant, PAI-1R, Slows Progression of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 329-338.	6.1	76
79	Visceral Adipose Tissue Inflammation Accelerates Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation, 2008, 117, 798-805.	1.6	135
80	Structural Differences between Active Forms of Plasminogen Activator Inhibitor Type 1 Revealed by Conformationally Sensitive Ligands. Journal of Biological Chemistry, 2008, 283, 18147-18157.	3.4	25
81	Mechanism of Inactivation of Plasminogen Activator Inhibitor-1 by a Small Molecule Inhibitor. Journal of Biological Chemistry, 2007, 282, 9288-9296.	3.4	86
82	The Contributions of Integrin Affinity and Integrin-Cytoskeletal Engagement in Endothelial and Smooth Muscle Cell Adhesion to Vitronectin. Journal of Biological Chemistry, 2007, 282, 15679-15689.	3.4	29
83	Molecular regulation of the PAIâ€1 gene by hypoxia: contributions of Egrâ€1, HIFâ€1 α, and C/EBPα. FASEB Journal, 2007, 21, 935-949.	0.5	104
84	Identification of a novel targeting sequence for regulated secretion in the serine protease inhibitor neuroserpin. Biochemical Journal, 2007, 402, 25-34.	3.7	28
85	Tissue-type plasminogen activator–mediated shedding of astrocytic low-density lipoprotein receptor–related protein increases the permeability of the neurovascular unit. Blood, 2007, 109, 3270-3278.	1.4	163
86	Structure-Function Relationships of Plasminogen Activator Inhibitor-1 and Its Potential as a Therapeutic Agent. Current Drug Targets, 2007, 8, 971-981.	2.1	47
87	Editorial [Hot Topic: Plasminogen Activator Inhibitor-1 (Guest Editor: Daniel A. Lawrence)]. Current Drug Targets, 2007, 8, 960-961.	2.1	0
88	Neuroserpin polymorphisms and stroke risk in a biracial population: the stroke prevention in young women study. BMC Neurology, 2007, 7, 37.	1.8	12
89	Neuroserpin in Neurological Disease. , 2007, , 593-617.		0
90	Dual Role for Plasminogen Activator Inhibitor Type 1 as Soluble and as Matricellular Regulator of Epithelial Alveolar Cell Wound Healing. American Journal of Pathology, 2006, 169, 1624-1632.	3.8	45

#	Article	IF	CITATIONS
91	Effect of pharmacologic plasminogen activator inhibitor-1 inhibition on cell motility and tumor angiogenesis. Journal of Thrombosis and Haemostasis, 2006, 4, 2710-2715.	3.8	70
92	Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration. EMBO Journal, 2006, 25, 1860-1870.	7.8	161
93	Noninhibitory PAI-1 enhances plasmin-mediated matrix degradation both in vitro and in experimental nephritis. Kidney International, 2006, 70, 515-522.	5.2	19
94	A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics. Blood, 2005, 106, 3234-3241.	1.4	101
95	The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. Journal of Lipid Research, 2005, 46, 1721-1731.	4.2	154
96	A Mechanism for Assembly of Complexes of Vitronectin and Plasminogen Activator Inhibitor-1 from Sedimentation Velocity Analysis. Journal of Biological Chemistry, 2005, 280, 28711-28720.	3.4	21
97	A Soluble Fn14-Fc Decoy Receptor Reduces Infarct Volume in a Murine Model of Cerebral Ischemia. American Journal of Pathology, 2005, 166, 511-520.	3.8	117
98	New Functions for an Old Enzyme: Nonhemostatic Roles for Tissue-Type Plasminogen Activator in the Central Nervous System. Experimental Biology and Medicine, 2004, 229, 1097-1104.	2.4	62
99	Mouse DESC1 Is Located within a Cluster of Seven DESC1-like Genes and Encodes a Type II Transmembrane Serine Protease That Forms Serpin Inhibitory Complexes. Journal of Biological Chemistry, 2004, 279, 46981-46994.	3.4	44
100	Conservation of Critical Functional Domains in Murine Plasminogen Activator Inhibitor-1. Journal of Biological Chemistry, 2004, 279, 17914-17920.	3.4	27
101	Mutants of Plasminogen Activator Inhibitor-1 Designed to Inhibit Neutrophil Elastase and Cathepsin G Are More Effective in Vivo than Their Endogenous Inhibitors. Journal of Biological Chemistry, 2004, 279, 29981-29987.	3.4	21
102	Characterization and comparative evaluation of a structurally unique PAI-1 inhibitor exhibiting oral in-vivo efficacy. Journal of Thrombosis and Haemostasis, 2004, 2, 1422-1428.	3.8	41
103	Tissue-Type Plasminogen Activator and Neuroserpin: A Well-Balanced Act in the Nervous System?. Trends in Cardiovascular Medicine, 2004, 14, 173-180.	4.9	54
104	Serpin mutagenesis. Methods, 2004, 32, 130-140.	3.8	10
105	Tissue plasminogen activator and neuroserpin are widely expressed in the human central nervous system. Thrombosis and Haemostasis, 2004, 92, 358-368.	3.4	76
106	Neuroserpin: a selective inhibitor of tissue-type plasminogen activator in the central nervous system. Thrombosis and Haemostasis, 2004, 91, 457-464.	3.4	77
107	Progressive Ankylosis (Ank) Protein Is Expressed by Neurons and Ank Immunohistochemical Reactivity Is Increased by Limbic Seizures. Laboratory Investigation, 2003, 83, 1025-1032.	3.7	24
108	Old Dogs and New Tricks, Proteases, Inhibitors, and Cell Migration. Science Signaling, 2003, 2003, pe24-pe24.	3.6	36

#	Article	IF	CITATIONS
109	Sequences within Domain II of the Urokinase Receptor Critical for Differential Ligand Recognition. Journal of Biological Chemistry, 2003, 278, 29925-29932.	3.4	27
110	Mapping of a Conformational Epitope on Plasminogen Activator Inhibitor-1 by Random Mutagenesis. Journal of Biological Chemistry, 2003, 278, 16329-16335.	3.4	38
111	The Low Density Lipoprotein Receptor-related Protein Modulates Protease Activity in the Brain by Mediating the Cellular Internalization of Both Neuroserpin and Neuroserpin-Tissue-type Plasminogen Activator Complexes. Journal of Biological Chemistry, 2003, 278, 50250-50258.	3.4	54
112	Impaired fibrinolysis in multiple sclerosis: a role for tissue plasminogen activator inhibitors. Brain, 2003, 126, 1590-1598.	7.6	86
113	Plasminogen Activator Inhibitor-1 in Tumor Growth, Angiogenesis and Vascular Remodeling. Current Pharmaceutical Design, 2003, 9, 1545-1564.	1.9	155
114	A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. Journal of Clinical Investigation, 2003, 112, 379-388.	8.2	75
115	Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor–related protein. Journal of Clinical Investigation, 2003, 112, 1533-1540.	8.2	292
116	A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. Journal of Clinical Investigation, 2003, 112, 379-388.	8.2	113
117	Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor–related protein. Journal of Clinical Investigation, 2003, 112, 1533-1540.	8.2	417
118	Platelet-derived Growth Factor (PDGF)-induced Tyrosine Phosphorylation of the Low Density Lipoprotein Receptor-related Protein (LRP). Journal of Biological Chemistry, 2002, 277, 15499-15506.	3.4	222
119	Acyl-Enzyme Complexes between Tissue-type Plasminogen Activator and Neuroserpin are Short-lived in Vitro. Journal of Biological Chemistry, 2002, 277, 46852-46857.	3.4	53
120	Adjuvant Treatment With Neuroserpin Increases the Therapeutic Window for Tissue-Type Plasminogen Activator Administration in a Rat Model of Embolic Stroke. Circulation, 2002, 106, 740-745.	1.6	128
121	Association between conformational mutations in neuroserpin and onset and severity of dementia. Lancet, The, 2002, 359, 2242-2247.	13.7	145
122	Plasminogen promotes sarcoma growth and suppresses the accumulation of tumor-infiltrating macrophages. Oncogene, 2002, 21, 8830-8842.	5.9	24
123	Structural similarity of the covalent complexes formed between the serpin plasminogen activator inhibitor-1 and the arginine-specific proteinases trypsin, LMW u-PA, HMW u-PA, and t-PA: Use of site-specific fluorescent probes of local environment. Protein Science, 2002, 11, 1182-1191.	7.6	14
124	Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. Journal of Clinical Investigation, 2002, 109, 1571-1578.	8.2	105
125	Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. Journal of Clinical Investigation, 2002, 109, 1571-1578.	8.2	61
126	Plasminogen Activator Inhibitor-1 Regulates Tumor Growth and Angiogenesis. Journal of Biological Chemistry, 2001, 276, 33964-33968.	3.4	235

#	Article	IF	CITATIONS
127	Endothelial Cells Inhibit Flow-Induced Smooth Muscle Cell Migration. Circulation, 2001, 103, 597-603.	1.6	87
128	Inhibition of Angiogenesis in Vivo by Plasminogen Activator Inhibitor-1. Journal of Biological Chemistry, 2001, 276, 8135-8141.	3.4	149
129	Neuroserpin Mutation S52R Causes Neuroserpin Accumulation in Neurons and Is Associated with Progressive Myoclonus Epilepsy. Journal of Neuropathology and Experimental Neurology, 2000, 59, 1070-1086.	1.7	72
130	Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood, 2000, 96, 569-576.	1.4	249
131	Type 1 Plasminogen Activator Inhibitor Binds to Fibrin via Vitronectin. Journal of Biological Chemistry, 2000, 275, 19788-19794.	3.4	61
132	Partitioning of Serpin-Proteinase Reactions between Stable Inhibition and Substrate Cleavage Is Regulated by the Rate of Serpin Reactive Center Loop Insertion into β-Sheet A. Journal of Biological Chemistry, 2000, 275, 5839-5844.	3.4	94
133	Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood, 2000, 96, 569-576.	1.4	42
134	Familial dementia caused by polymerization of mutant neuroserpin. Nature, 1999, 401, 376-379.	27.8	342
135	The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure, 1999, 7, 111-118.	3.3	152
136	Familial Encephalopathy with Neuroserpin Inclusion Bodies. American Journal of Pathology, 1999, 155, 1901-1913.	3.8	112
137	Title is missing!. Nature, 1999, 401, 376-379.	27.8	113
138	Beyond Fibrinolysis: The Role of Plasminogen Activator Inhibitor-1 and Vitronectin in Vascular Wound Healing. Trends in Cardiovascular Medicine, 1998, 8, 175-180.	4.9	27
139	Novel approaches to thrombolysis based on modulation of endogenous fibrinolysis. Coronary Artery Disease, 1998, 9, 99-104.	0.7	4
140	Plasminogen Activator Inhibitor-1 Contains a Cryptic High Affinity Binding Site for the Low Density Lipoprotein Receptor-related Protein. Journal of Biological Chemistry, 1998, 273, 6358-6366.	3.4	112
141	Neuroserpin, a Brain-associated Inhibitor of Tissue Plasminogen Activator Is Localized Primarily in Neurons. Journal of Biological Chemistry, 1997, 272, 33062-33067.	3.4	192
142	Characterization of the Binding of Different Conformational Forms of Plasminogen Activator Inhibitor-1 to Vitronectin. Journal of Biological Chemistry, 1997, 272, 7676-7680.	3.4	105
143	Serpin Conformational Change in Ovalbumin. Enhanced Reactive Center Loop Insertion through Hinge Region Mutationsâ€. Biochemistry, 1997, 36, 5432-5440	2.5	62
144	The serpin–proteinase complex revealed. Nature Structural and Molecular Biology, 1997, 4, 339-341.	8.2	48

#	Article	IF	CITATIONS
145	The Role of Reactive-Center Loop Mobility in the Serpin Inhibitory Mechanism. Advances in Experimental Medicine and Biology, 1997, 425, 99-108.	1.6	4
146	The serpin PAI-1 inhibits cell migration by blocking integrin αvβ3 binding to vitronectin. Nature, 1996, 383, 441-443.	27.8	658
147	Plasminogen Activator Inhibitor-1 and Vitronectin Promote the Cellular Clearance of Thrombin by Low Density Lipoprotein Receptor-related Proteins 1 and 2. Journal of Biological Chemistry, 1996, 271, 8215-8220.	3.4	65
148	Role of the Catalytic Serine in the Interactions of Serine Proteinases with Protein Inhibitors of the Serpin Family. Journal of Biological Chemistry, 1995, 270, 30007-30017.	3.4	76
149	Serpin-Protease Complexes Are Trapped as Stable Acyl-Enzyme Intermediates. Journal of Biological Chemistry, 1995, 270, 25309-25312.	3.4	229
150	The Acid Stabilization of Plasminogen Activator Inhibitor-1 Depends on Protonation of a Single Group That Affects Loop Insertion into β-Sheet A. Journal of Biological Chemistry, 1995, 270, 27942-27947.	3.4	65
151	Identification of Tissue-type Plasminogen Activator-specific Plasminogen Activator Inhibitor-1 Mutants. Journal of Biological Chemistry, 1995, 270, 9301-9306.	3.4	26
152	A Fluorescent Probe Study of Plasminogen Activator Inhibitor-1. Journal of Biological Chemistry, 1995, 270, 5395-5398.	3.4	113
153	Purification of active human plasminogen activator inhibitor 1 from Escherichia coli. Comparison with natural and recombinant forms purified from eucaryotic cells. FEBS Journal, 1989, 186, 523-533.	0.2	107
154	The organization of the human-plasminogen-activator-inhibitor-1 gene. Implications on the evolution of the serine-protease inhibitor family. FEBS Journal, 1988, 176, 609-616.	0.2	71
155	Inactivation of plasminogen activator inhibitor by oxidants. Biochemistry, 1986, 25, 6351-6355.	2.5	129
156	Cloning and sequence of a cDNA coding for the human beta-migrating endothelial-cell-type plasminogen activator inhibitor Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6776-6780.	7.1	374
157	Fibrinolytic system of cultured endothelial cells: Regulation by plasminogen activator inhibitor. Journal of Cellular Biochemistry, 1986, 32, 273-280.	2.6	30
158	Activated protein C stimulates the fibrinolytic activity of cultured endothelial cells and decreases antiactivator activity Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1121-1125.	7.1	190
159	Reverse fibrin autography: A method to detect and partially characterize protease inhibitors after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analytical Biochemistry, 1984, 137, 454-463.	2.4	172