Beom-Sik Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675752/publications.pdf

Version: 2024-02-01

24 papers

1,397 citations

471509 17 h-index 610901 24 g-index

24 all docs

24 docs citations

times ranked

24

1632 citing authors

#	Article	IF	CITATIONS
1	Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nature Catalysis, 2020, 3, 368-375.	34.4	220
2	Fully Dispersed Rh Ensemble Catalyst To Enhance Low-Temperature Activity. Journal of the American Chemical Society, 2018, 140, 9558-9565.	13.7	170
3	Highly Water-Resistant La-Doped Co ₃ O ₄ Catalyst for CO Oxidation. ACS Catalysis, 2019, 9, 10093-10100.	11.2	126
4	Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts. Energy Conversion and Management, 2017, 149, 966-973.	9.2	119
5	Catalytic Copyrolysis of Cellulose and Thermoplastics over HZSM-5 and HY. ACS Sustainable Chemistry and Engineering, 2016, 4, 1354-1363.	6.7	113
6	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 20691-20696.	13.8	113
7	In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer. Journal of Industrial and Engineering Chemistry, 2017, 54, 447-453.	5.8	83
8	Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2019, 247, 142-149.	20.2	76
9	Pyrolysis and catalytic upgrading of Citrus unshiu peel. Bioresource Technology, 2015, 194, 312-319.	9.6	60
10	In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5. Catalysis Today, 2017, 293-294, 151-158.	4.4	53
11	Removal of Cu2+ by biochars derived from green macroalgae. Environmental Science and Pollution Research, 2016, 23, 985-994.	5.3	52
12	Ex situ catalytic upgrading of lignocellulosic biomass components over vanadium contained H-MCM-41 catalysts. Catalysis Today, 2016, 265, 184-191.	4.4	36
13	Lean NOx trap catalysts with high low-temperature activity and hydrothermal stability. Applied Catalysis B: Environmental, 2020, 270, 118871.	20.2	29
14	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie, 2020, 132, 20872-20877.	2.0	28
15	Effective toluene oxidation under ozone over mesoporous MnOx/γ-Al2O3 catalyst prepared by solvent deficient method: Effect of Mn precursors on catalytic activity. Environmental Research, 2021, 195, 110876.	7.5	27
16	Synergistic Effect of Cu/CeO ₂ and Pt–BaO/CeO ₂ Catalysts for a Low-Temperature Lean NO _{<i>x</i>} Trap. Environmental Science & Description (2019, 53, 2900-2907).	10.0	26
17	Surface Restructuring of Supported Nano-Ceria for Improving Sulfur Resistance. ACS Catalysis, 2021, 11, 7154-7159.	11.2	23
18	Mn-doped CuO Co3O4CeO2 catalyst with enhanced activity and durability for hydrocarbon oxidation. Molecular Catalysis, 2019, 467, 9-15.	2.0	12

#	Article	IF	CITATION
19	Seemingly Negligible Amounts of Platinum Nanoparticles Mislead Electrochemical Oxygen Reduction Reaction Pathway on Platinum Singleâ€Atom Catalysts. ChemElectroChem, 2020, 7, 3716-3719.	3.4	8
20	Catalytic Pyrolysis of Municipal Plastic Film Wastes Over Nanoporous Al-MCM-41. Journal of Nanoscience and Nanotechnology, 2018, 18, 1078-1082.	0.9	7
21	Ex-situ Catalytic Pyrolysis of Korean Native Oak Tree over Microporous Zeolites. Applied Chemistry for Engineering, 2016, 27, 407-414.	0.2	5
22	Ozone-assisted oxidation of methyl ethyl ketone over mesoporous MnOx/γ-Al2O3 catalysts. Materials Letters, 2021, 299, 130105.	2.6	4
23	The use of black mass in spent primary battery as an oxidative catalyst for removal of volatile organic compounds. Journal of Industrial and Engineering Chemistry, 2022, 114, 323-330.	5.8	4
24	Catalytic Rapid Pyrolysis of <i>Quercus variabilis </i> over Nanoporous Catalysts. Journal of Nanomaterials, 2015, 2015, 1-6.	2.7	3