Inke Siewert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675288/publications.pdf

Version: 2024-02-01

		304743	377865
54	1,302	22	34
papers	citations	h-index	g-index
CE	C.F.	CF	1.420
65	65	65	1430
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transition Metal Complex Catalyzed Photo- and Electrochemical (De)hydrogenations Involving C=O and C=N Bonds. Synthesis, 2022, 54, 295-314.	2.3	6
2	Redoxâ€Active Heteroatomâ€Functionalized Polyacetylenes. Angewandte Chemie, 2022, 134, e202114586.	2.0	O
3	Electrochemical CO2 Reduction Catalyzed by Binuclear LRe2(CO)6Cl2 and LMn2(CO)6Br2 Complexes with an Internal Proton Source. Accounts of Chemical Research, 2022, , .	15.6	7
4	Ordering a rhenium catalyst on Ag(001) through molecule-surface step interaction. Communications Chemistry, 2022, 5 , .	4.5	2
5	Electroreduction of Carbonyl Compounds Catalyzed by a Manganese Complex. ACS Catalysis, 2022, 12, 8632-8640.	11.2	9
6	Selective Electrocatalytic CO ₂ Reduction to CO by an NHC-Based Organometallic Heme Analogue. ACS Catalysis, 2021, 11, 3257-3267.	11.2	12
7	A Bioinspired Disulfide/Dithiol Redox Switch in a Rhenium Complex as Proton, H Atom, and Hydride Transfer Reagent. Journal of the American Chemical Society, 2021, 143, 6238-6247.	13.7	13
8	Solvent dependent Câ^'H Bond Strength in a Nickel Pincer Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1478-1485.	1.2	3
9	A Stable Homoleptic Divinyl Tetrelene Series. Chemistry - A European Journal, 2021, 27, 8572-8579.	3 . 3	25
10	Redoxâ€Active Heteroatomâ€Functionalized Polyacetylenes. Angewandte Chemie - International Edition, 2021, 61, e202114586.	13.8	8
11	Electrocatalytic Hydrogen Production with a Molecular Cobalt Complex in Aqueous Solution. ChemElectroChem, 2020, 7, 217-221.	3.4	7
12	Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO ₂ Reduction Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 4319-4333.	2.0	33
13	Renewable resources for sustainable metallaelectro-catalysed C–H activation. Chemical Science, 2020, 11, 8657-8670.	7.4	69
14	Chemoselective Electrochemical Hydrogenation of Ketones and Aldehydes with a Wellâ€Defined Baseâ€Metal Catalyst. Chemistry - A European Journal, 2020, 26, 14137-14143.	3.3	25
15	A dinuclear rhenium complex in the electrochemically driven homogeneous and heterogeneous H ⁺ /CO ₂ -reduction. Dalton Transactions, 2020, 49, 8367-8374.	3.3	9
16	Photochemical Properties of Re(CO) ₃ Complexes with and without a Local Proton Source and Implications for CO ₂ Reduction Catalysis. Organometallics, 2020, 39, 2405-2414.	2.3	8
17	Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands. Inorganic Chemistry, 2020, 59, 4972-4984.	4.0	21
18	Rhenium Complexes of Pyridyl-Mesoionic Carbenes: Photochemical Properties and Electrocatalytic CO ₂ Reduction. Inorganic Chemistry, 2020, 59, 4215-4227.	4.0	43

#	Article	IF	Citations
19	(Electroâ€)chemical Splitting of Dinitrogen with a Rhenium Pincer Complex. European Journal of Inorganic Chemistry, 2020, 2020, 1402-1410.	2.0	37
20	An Electrochemical and Spectroscopic Study on Re(CO) ₃ (L)Cl in Dimethylformamide (L =) Tj ETQq0 C	0.rgBT/C 1.2)yerlock 10
21	The Impact of a Proton Relay in Binuclear α-Diimine-Mn(CO) ₃ Complexes on the CO ₂ Reduction Catalysis. Inorganic Chemistry, 2019, 58, 10444-10453.	4.0	25
22	Are Two Metal Ions Better than One? Mono―and Binuclear αâ€Diimineâ€Re(CO) ₃ Complexes with Protonâ€Responsive Ligands in CO ₂ Reduction Catalysis. Chemistry - A European Journal, 2019, 25, 5555-5564.	3.3	22
23	Electrochemical N2 splitting at well-defined metal complexes. Current Opinion in Electrochemistry, 2019, 15, 97-101.	4.8	11
24	Thermochemistry of a Cobalt Complex with Ionisable Pyrazole Protons. European Journal of Inorganic Chemistry, 2018, 2018, 2339-2344.	2.0	4
25	2,2′â€Bipyridine Equipped with a Disulfide/Dithiol Switch for Coupled Twoâ€Electron and Twoâ€Proton Transfer. Chemistry - A European Journal, 2018, 24, 4864-4870.	3.3	15
26	A Dinculear Rhenium Complex with a Proton Responsive Ligand in the Electrochemicalâ€Driven CO ₂ â€Reduction Catalysis. ChemistrySelect, 2018, 3, 4593-4597.	1.5	15
27	Mechanistic Studies on the Anodic Functionalization of Alkenes Catalyzed by Diselenides. ACS Catalysis, 2018, 8, 10901-10912.	11.2	47
28	Evidence for a Single Electron Shift in a Lewis Acid–Base Reaction. Journal of the American Chemical Society, 2018, 140, 15419-15424.	13.7	53
29	Mechanism of Chemical and Electrochemical N ₂ Splitting by a Rhenium Pincer Complex. Journal of the American Chemical Society, 2018, 140, 7922-7935.	13.7	110
30	Electrochemical water oxidation using a copper complex. Dalton Transactions, 2018, 47, 10737-10741.	3.3	27
31	A Copper Complex as Catalyst in Proton Reduction. European Journal of Inorganic Chemistry, 2017, 2017, 3376-3382.	2.0	14
32	Dinuclear Rhenium Complex with a Proton Responsive Ligand as a Redox Catalyst for the Electrochemical CO ₂ Reduction. Inorganic Chemistry, 2017, 56, 4176-4185.	4.0	50
33	Electrocatalytic Azide Oxidation Mediated by a Rh(PNP) Pincer Complex. Chemistry - A European Journal, 2017, 23, 17438-17443.	3.3	13
34	A Copper Complex as Catalyst in Proton Reduction. European Journal of Inorganic Chemistry, 2017, 2017, 3361-3361.	2.0	1
35	Koordinationschemie und Bioanorganik. Nachrichten Aus Der Chemie, 2016, 64, 232-245.	0.0	O
36	Copper Complexes with NH-Imidazolyl and NH-Pyrazolyl Units and Determination of Their Bond Dissociation Gibbs Energies. Inorganic Chemistry, 2016, 55, 1061-1068.	4.0	12

#	Article	IF	CITATIONS
37	Copper complexes as catalyst precursors in the electrochemical hydrogen evolution reaction. Dalton Transactions, 2016, 45, 6974-6982.	3.3	31
38	Electrocatalytic Dihydrogen Production with a Robust Mesoionic Pyridylcarbene Cobalt Catalyst. Angewandte Chemie - International Edition, 2015, 54, 13792-13795.	13.8	73
39	Dinuclear Zinc and Cobalt Complexes with Imidazolyl and N-Methylmidazolyl Units and Their Solution Speciation and Redox Properties. European Journal of Inorganic Chemistry, 2015, 2015, 2695-2706.	2.0	9
40	Phenol Basedâ€Ligands with Two Adjacent <i>N</i> , <i>N</i> 倲 <i>,O</i> å€Binding Pockets. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2498-2505.	1.2	9
41	Protonâ€Coupled Electron Transfer Reactions Catalysed by 3 d Metal Complexes. Chemistry - A European Journal, 2015, 21, 15078-15091.	3.3	51
42	Cobalt Catalyst with a Protonâ€Responsive Ligand for Water Oxidation. Chemistry - A European Journal, 2015, 21, 2780-2784.	3.3	23
43	Di- and Trinuclear Zinc and Cobalt Complexes and Their Reactivity towards Dioxygen. European Journal of Inorganic Chemistry, 2013, 2013, 3689-3698.	2.0	3
44	Bulky N-heterocyclic carbene and pyridine donor adducts of Co(II) bromide: Influence on reactivity of stoichiometry, sterics and donor capability. Journal of Organometallic Chemistry, 2013, 741-742, 33-39.	1.8	17
45	Syntheses and Anion Binding Capabilities of Bis(diarylboryl) Ferrocenes and Related Systems. Organometallics, 2013, 32, 2674-2684.	2.3	20
46	A Trispyrazolylborato Iron Cysteinato Complex as a Functional Model for the Cysteine Dioxygenase. Angewandte Chemie - International Edition, 2012, 51, 2234-2237.	13.8	54
47	Probing the influence of steric bulk on anion binding by triarylboranes: comparative studies of FcB(o-Tol)2, FcB(o-Xyl)2 and FcBMes2. Dalton Transactions, 2011, 40, 10345.	3.3	23
48	Syntheses of homochiral 1,2-ferrocene-functionalized Lewis acids and acid/base pairs. Journal of Organometallic Chemistry, 2011, 696, 2528-2532.	1.8	25
49	Lowâ€Molecularâ€Weight Analogues of the Soluble Methane Monooxygenase (sMMO): From the Structural Mimicking of Resting States and Intermediates to Functional Models. Chemistry - A European Journal, 2009, 15, 10316-10328.	3.3	60
50	A Dinuclear Iron Complex Based on Parallel Malonate Binding Sites: Cooperative Activation of Dioxygen and Biomimetic Ligand Oxidation. Chemistry - A European Journal, 2008, 14, 9377-9388.	3.3	22
51	A Trispyrazolylborato Iron Malonato Complex as a Functional Model for the Acetylacetone Dioxygenase. Angewandte Chemie - International Edition, 2008, 47, 7953-7956.	13.8	44
52	A Xanthene-based Ligand with Two Adjacent Malonate Binding Sites. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2007, 62, 1251-1258.	0.7	3
53	High-valent Molybdenum Imido Complexes with Tethered Olefins. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 1078-1082.	1.2	7
54	A Binuclear Cobalt Complex in the Electrochemical Water Oxidation Reaction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	1