## Peter Wilf

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/867508/publications.pdf

Version: 2024-02-01

95 papers 8,084 citations

44 h-index

66250

87 g-index

97 all docs 97 docs citations

97 times ranked 8306 citing authors

| #  | Article                                                                                                                                                                                          | IF                 | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 1  | The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytologist, 2022, 233, 2017-2035.                                                                             | 3.5                | 119                 |
| 2  | First fossil-leaf floras from Brunei Darussalam show dipterocarp dominance in Borneo by the Pliocene. PeerJ, 2022, 10, e12949.                                                                   | 0.9                | 2                   |
| 3  | Gondwanan survivor lineages and the highâ€risk biogeography of Anthropocene Southeast Asia. Journal of Systematics and Evolution, 2022, 60, 715-727.                                             | 1.6                | 4                   |
| 4  | Decoding familyâ€level features for modern and fossil leaves from computerâ€vision heat maps. American Journal of Botany, 2022, 109, 768-788.                                                    | 0.8                | 1                   |
| 5  | Cunoniaceae infructescences from the early Eocene Laguna del Hunco flora, Patagonia, Argentina.<br>American Journal of Botany, 2022, , .                                                         | 0.8                | 2                   |
| 6  | Facies interpretation and geochronology of diverse Eocene floras and faunas, northwest Chubut Province, Patagonia, Argentina. Bulletin of the Geological Society of America, 2021, 133, 740-752. | 1.6                | 10                  |
| 7  | Unexpected larger distribution of paleogene stem-rollers (AVES, CORACII): new evidence from the Eocene of Patagonia, Argentina. Scientific Reports, 2021, 11, 1363.                              | 1.6                | 5                   |
| 8  | First South American Record of Winteroxylon, Eocene of Laguna del Hunco (Chubut, Patagonia,) Tj ETQq0 0 0 rg                                                                                     | gBT /Overlo<br>0.6 | ock 10 Tf 50 4<br>7 |
| 9  | An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning. PhytoKeys, 2021, 187, 93-128.                                                     | 0.4                | 12                  |
| 10 | Cretaceous–Paleogene plant extinction and recovery in Patagonia. Paleobiology, 2020, 46, 445-469.                                                                                                | 1.3                | 24                  |
| 11 | New physaloid fruitâ€fossil species from early Eocene South America. American Journal of Botany, 2020, 107, 1749-1762.                                                                           | 0.8                | 13                  |
| 12 | Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. Communications Biology, 2020, 3, 708.                                                         | 2.0                | 15                  |
| 13 | Eocene Araucaria Sect. Eutacta from Patagonia and floristic turnover during the initial isolation of South America. American Journal of Botany, 2020, 107, 806-832.                              | 0.8                | 13                  |
| 14 | Early Eocene Spore and Pollen Assemblages from the Laguna del Hunco Fossil Lake Beds, Patagonia, Argentina. International Journal of Plant Sciences, 2020, 181, 594-615.                         | 0.6                | 22                  |
| 15 | Protect Australia's Gondwana Rainforests. Science, 2020, 367, 1083-1083.                                                                                                                         | 6.0                | 36                  |
| 16 | Eocene "Chusquea―fossil from Patagonia is a conifer, not a bamboo. PhytoKeys, 2020, 139, 77-89.                                                                                                  | 0.4                | 9                   |
| 17 | Conifer wood assemblage dominated by Podocarpaceae, early Eocene of Laguna del Hunco, central Argentinean Patagonia. PhytoKeys, 2020, 156, 81-102.                                               | 0.4                | 10                  |
| 18 | Origins and Assembly of Malesian Rainforests. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 119-143.                                                                           | 3.8                | 46                  |

| #  | Article                                                                                                                                                                                                               | IF          | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 19 | A South American fossil relative of Phyllocladus: Huncocladus laubenfelsii gen. et sp. nov. (Podocarpaceae), from the early Eocene of Laguna del Hunco, Patagonia, Argentina. Australian Systematic Botany, 2019, , . | 0.3         | 3         |
| 20 | Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests. Science, 2019, 364, .                                                                                                                       | 6.0         | 45        |
| 21 | Response to Comment on "Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests― Science, 2019, 366, .                                                                                               | 6.0         | 3         |
| 22 | Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina. Alcheringa, 2019, 43, 127-145.                                                                                     | 0.5         | 13        |
| 23 | Fossil fern rhizomes as a model system for exploring epiphyte community structure across geologic time: evidence from Patagonia. PeerJ, 2019, 7, e8244.                                                               | 0.9         | 7         |
| 24 | Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae). Annals of Botany, 2018, 121, 431-442.                                                                 | 1.4         | 25        |
| 25 | Early Cenozoic Vegetation in Patagonia: New Insights from Organically Preserved Plant Fossils<br>(Ligorio Márquez Formation, Argentina). International Journal of Plant Sciences, 2018, 179, 115-135.                 | 0.6         | 14        |
| 26 | Diverse Plant-Insect Associations from the Latest Cretaceous and Early Paleocene of Patagonia, Argentina. Ameghiniana, 2018, 55, 303.                                                                                 | 0.3         | 29        |
| 27 | Agathis trees of Patagonia's Cretaceousâ€Paleogene death landscapes and their evolutionary significance. American Journal of Botany, 2018, 105, 1345-1368.                                                            | 0.8         | 49        |
| 28 | Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina). American Journal of Botany, 2018, 105, 927-942.                                                                                          | 0.8         | 22        |
| 29 | Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science, 2017, 355, 71-75.                                                                                                        | 6.0         | 80        |
| 30 | New age constraints for early Paleogene strata of central Patagonia, Argentina: Implications for the timing of South American Land Mammal Ages. Bulletin of the Geological Society of America, 2017, 129, 886-903.    | 1.6         | 51        |
| 31 | The fossil flipâ€leaves ( <i>Retrophyllum</i> , Podocarpaceae) of southern South America. American<br>Journal of Botany, 2017, 104, 1344-1369.                                                                        | 0.8         | 36        |
| 32 | Global climatic drivers of leaf size. Science, 2017, 357, 917-921.                                                                                                                                                    | 6.0         | 580       |
| 33 | Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nature Ecology and Evolution, 2017, 1, 12.                                                                                | 3.4         | 72        |
| 34 | Flowering after disaster: Early Danian buckthorn (Rhamnaceae) flowers and leaves from Patagonia. PLoS ONE, 2017, 12, e0176164.                                                                                        | 1.1         | 25        |
| 35 | The last Patagonian cycad,Austrozamiastockeyigen. et sp. nov., early Eocene of Laguna del Hunco,<br>Chubut, Argentina. Botany, 2016, 94, 817-829.                                                                     | 0.5         | 16        |
| 36 | Molecular dates require geologic testing. New Phytologist, 2016, 209, 1359-1362.                                                                                                                                      | <b>3.</b> 5 | 21        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Computer vision cracks the leaf code. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3305-3310.                                                                | 3.3 | 114       |
| 38 | Peaches Preceded Humans: Fossil Evidence from SW China. Scientific Reports, 2015, 5, 16794.                                                                                                                 | 1.6 | 38        |
| 39 | Green Web or megabiased clock? Plant fossils from Gondwanan Patagonia speak on evolutionary radiations. New Phytologist, 2015, 207, 283-290.                                                                | 3.5 | 63        |
| 40 | SEDIMENTARY FACIES AND DEPOSITIONAL ENVIRONMENTS OF DIVERSE EARLY PALEOCENE FLORAS, NORTH-CENTRAL SAN JORGE BASIN, PATAGONIA, ARGENTINA. Palaios, 2015, 30, 553-573.                                        | 0.6 | 26        |
| 41 | Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics.<br>American Journal of Botany, 2015, 102, 1160-1173.                                                  | 0.8 | 31        |
| 42 | <i>Ginkgoites patagonica</i> (Berry) comb. nov. from the Eocene of Patagonia, Last Ginkgoalean Record in South America. International Journal of Plant Sciences, 2015, 176, 346-363.                        | 0.6 | 17        |
| 43 | Insect Leaf-Chewing Damage Tracks Herbivore Richness in Modern and Ancient Forests. PLoS ONE, 2014, 9, e94950.                                                                                              | 1.1 | 88        |
| 44 | Novel Insect Leaf-Mining after the End-Cretaceous Extinction and the Demise of Cretaceous Leaf Miners, Great Plains, USA. PLoS ONE, 2014, 9, e103542.                                                       | 1.1 | 54        |
| 45 | Functional distinctiveness of major plant lineages. Journal of Ecology, 2014, 102, 345-356.                                                                                                                 | 1.9 | 108       |
| 46 | Paleoâ€Antarctic rainforest into the modern Old World tropics: The rich past and threatened future of the "southern wet forest survivors― American Journal of Botany, 2014, 101, 2121-2135.                 | 0.8 | 87        |
| 47 | Miocene leaves of <i>Elaeagnus</i> (Elaeagnaceae) from the Qinghaiâ€Tibet Plateau, its modern center of diversity and endemism. American Journal of Botany, 2014, 101, 1350-1361.                           | 0.8 | 26        |
| 48 | Reinvestigation of Leaf Rank, an Underappreciated Component of Leo Hickey's Legacy. Bulletin of the Peabody Museum of Natural History, 2014, 55, 79.                                                        | 0.6 | 8         |
| 49 | First South American <i>Agathis</i> (Araucariaceae), Eocene of Patagonia. American Journal of Botany, 2014, 101, 156-179.                                                                                   | 0.8 | 78        |
| 50 | First record of <i>Todea</i> (Osmundaceae) in South America, from the early Eocene paleorainforests of Laguna del Hunco (Patagonia, Argentina). American Journal of Botany, 2013, 100, 1831-1848.           | 0.8 | 40        |
| 51 | Splendid and Seldom Isolated: The Paleobiogeography of Patagonia. Annual Review of Earth and Planetary Sciences, 2013, 41, 561-603.                                                                         | 4.6 | 120       |
| 52 | Subfossil Leaves Reveal a New Upland Hardwood Component of the Pre-European Piedmont Landscape, Lancaster County, Pennsylvania. PLoS ONE, 2013, 8, e79317.                                                  | 1.1 | 9         |
| 53 | First Evidence for Wollemi Pine-type Pollen (Dilwynites: Araucariaceae) in South America. PLoS ONE, 2013, 8, e69281.                                                                                        | 1.1 | 24        |
| 54 | Rainforest conifers of Eocene Patagonia: Attached cones and foliage of the extant Southeast Asian and Australasian genus <i>Dacrycarpus</i> (Podocarpaceae). American Journal of Botany, 2012, 99, 562-584. | 0.8 | 75        |

| #  | Article                                                                                                                                                                                                                                 | IF       | CITATIONS  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 55 | Cretaceous/Paleogene Floral Turnover in Patagonia: Drop in Diversity, Low Extinction, and a Classopollis Spike. PLoS ONE, 2012, 7, e52455.                                                                                              | 1.1      | 126        |
| 56 | Testing the Impact of Calibration on Molecular Divergence Times Using a Fossil-Rich Group: The Case of Nothofagus (Fagales). Systematic Biology, 2012, 61, 289-313.                                                                     | 2.7      | 351        |
| 57 | Oldest Known Eucalyptus Macrofossils Are from South America. PLoS ONE, 2011, 6, e21084.                                                                                                                                                 | 1.1      | 109        |
| 58 | Paleotemperature Proxies from Leaf Fossils Reinterpreted in Light of Evolutionary History. PLoS ONE, 2010, 5, e15161.                                                                                                                   | 1.1      | 95         |
| 59 | Early Eocene40Ar/39Ar Age for the Pampa de Jones plant, Frog, and Insect Biota (Huitrera Formation,) Tj ETQq1 1                                                                                                                         | 0,784314 | rgBT /Over |
| 60 | Fossil insect folivory tracks paleotemperature for six million years. Ecological Monographs, 2010, 80, 547-567.                                                                                                                         | 2.4      | 110        |
| 61 | Quantification of large uncertainties in fossil leaf paleoaltimetry. Tectonics, 2010, 29, .                                                                                                                                             | 1.3      | 40         |
| 62 | Distinguishing Agromyzidae (Diptera) Leaf Mines in the Fossil Record: New Taxa from the Paleogene of North America and Germany and Their Evolutionary Implications. Journal of Paleontology, 2010, 84, 935-954.                         | 0.5      | 49         |
| 63 | Late Paleocene fossils from the Cerrej $\tilde{A}^3$ n Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18627-18632. | 3.3      | 256        |
| 64 | Ecology of leaf teeth: A multiâ€site analysis from an Australian subtropical rainforest. American Journal of Botany, 2009, 96, 738-750.                                                                                                 | 0.8      | 43         |
| 65 | Phylogenetic biome conservatism on a global scale. Nature, 2009, 458, 754-756.                                                                                                                                                          | 13.7     | 588        |
| 66 | No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4271-4277.              | 1.2      | 97         |
| 67 | <i>Papuacedrus (i) (Cupressaceae) in Eocene Patagonia: A new fossil link to Australasian rainforests.<br/>American Journal of Botany, 2009, 96, 2031-2047.</i>                                                                          | 0.8      | 91         |
| 68 | Odonatan endophytic oviposition from the Eocene of Patagonia: The ichnogenus <i>Paleoovoidus</i> and implications for behavioral stasis. Journal of Paleontology, 2009, 83, 431-447.                                                    | 0.5      | 42         |
| 69 | Insectâ€damaged fossil leaves record food web response to ancient climate change and extinction. New Phytologist, 2008, 178, 486-502.                                                                                                   | 3.5      | 68         |
| 70 | Sensitivity of leaf size and shape to climate within <i> Acer rubrum</i> and <i>Quercus kelloggii</i> New Phytologist, 2008, 179, 808-817.                                                                                              | 3.5      | 120        |
| 71 | Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1960-1964.                                                  | 3.3      | 224        |
| 72 | Fossil Angiosperm Leaves: Paleobotany's Difficult Children Prove Themselves. The Paleontological Society Papers, 2008, 14, 319-333.                                                                                                     | 0.8      | 12         |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 2007, 33, 574-589.                                                                                                                    | 1.3 | 107       |
| 74 | A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology, 2007, 35, 947.                                                                                               | 2.0 | 130       |
| 75 | Revision of the Proteaceae Macrofossil Record from Patagonia, Argentina. Botanical Review, The, 2007, 73, 235-266.                                                                                                                      | 1.7 | 42        |
| 76 | Why Do Toothed Leaves Correlate with Cold Climates? Gas Exchange at Leaf Margins Provides New Insights into a Classic Paleotemperature Proxy. International Journal of Plant Sciences, 2006, 167, 11-18.                                | 0.6 | 191       |
| 77 | Decoupled Plant and Insect Diversity After the End-Cretaceous Extinction. Science, 2006, 313, 1112-1115.                                                                                                                                | 6.0 | 149       |
| 78 | Casuarinaceae from the Eocene of Patagonia, Argentina. International Journal of Plant Sciences, 2006, 167, 1279-1289.                                                                                                                   | 0.6 | 65        |
| 79 | Richness of plant-insect associations in Eocene Patagonia: A legacy for South American biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8944-8948.                             | 3.3 | 102       |
| 80 | Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 2005, 92, 1141-1151.                                                                             | 0.8 | 271       |
| 81 | Eocene Plant Diversity at Laguna del Hunco and RÃo Pichileufú, Patagonia, Argentina. American<br>Naturalist, 2005, 165, 634-650.                                                                                                        | 1.0 | 200       |
| 82 | Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology, 2004, 30, 347-368.                                                                                     | 1.3 | 135       |
| 83 | High Plant Diversity in Eocene South America: Evidence from Patagonia. Science, 2003, 300, 122-125.                                                                                                                                     | 6.0 | 263       |
| 84 | Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 599-604. | 3.3 | 214       |
| 85 | Digital Future for Paleoclimate Estimation from Fossil Leaves? Preliminary Results. Palaios, 2003, 18, 266-274.                                                                                                                         | 0.6 | 78        |
| 86 | Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2061-2066.                                                             | 3.3 | 252       |
| 87 | Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest.<br>American Journal of Botany, 2001, 88, 1096-1102.                                                                                      | 0.8 | 101       |
| 88 | Effects of Paleoceneâ€"Eocene warming on insect herbivory. Gff, 2000, 122, 178-179.                                                                                                                                                     | 0.4 | 1         |
| 89 | Response of Plant-Insect Associations to Paleocene-Eocene Warming. Science, 1999, 284, 2153-2156.                                                                                                                                       | 6.0 | 213       |
| 90 | Using fossil leaves as paleoprecipitation indicators: An Eocene example: Comment and Reply. Geology, 1999, 27, 91.                                                                                                                      | 2.0 | 13        |

## PETER WILF

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Portrait of a Late Paleocene (Early Clarkforkian) Terrestrial Ecosystem: Big Multi Quarry and Associated Strata, Washakie Basin, Southwestern Wyoming. Palaios, 1998, 13, 514.                                        | 0.6 | 45        |
| 92 | Using fossil leaves as paleoprecipitation indicators: An Eocene example. Geology, 1998, 26, 203.                                                                                                                      | 2.0 | 264       |
| 93 | When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology, 1997, 23, 373-390.                                                                                                              | 1.3 | 344       |
| 94 | Reaffirming the phyllocladoid affinities of Huncocladus laubenfelsii (Podocarpaceae) from the early Eocene of Patagonia: a comment on DÃ $\P$ rken et al. (2021). Botanical Journal of the Linnean Society, 0, , .    | 0.8 | 1         |
| 95 | Patagonia's diverse but homogeneous early Paleocene forests: Angiosperm leaves from the Danian<br>Salamanca and Peñas Coloradas formations, San Jorge Basin, Chubut, Argentina. Palaeontologia<br>Electronica, 0, , . | 0.9 | 4         |